Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine

Abstract

Highly porous polymethyl methacrylate (PMMA) fibers were fabricated via an electrospinning technique using a binary solvent system (8:2 dichloromethane:dimethylformamide) and controlled humidity. The electrospinning process was carried out in a closed hood under humid conditions (varying the humidity from 15 to 70 %). The effects of the concentration, electrospinning parameters, and humidity on the morphology of the PMMA fibers were assessed by field emission scanning electron microscopy (FE-SEM). The surface area, porosity, and mean interfiber pore size of membranes made from the fibers were measured with the Brunauer–Emmett–Teller (BET) method, and the diameter of the fibers was measured using an image analyzer. Nonporous and porous electrospun PMMA fibers exhibited concentration-dependent variations in their morphologies. No effect of the electrospinning parameters, such as the voltage and flow rate, was observed. The porosity of the PMMA fibers increased when the humidity was changed from 15 to 70 %. The porous PMMA fibers had a large surface area (139.0 m2/g) and a small interfiber pore size (34.8 Å), along with an average fiber diameter of 2 μm. The capacities of the porous and nonporous fibrous membranes to adsorb iodine and phenol were tested. The large surface areas of the membranes led to excellent adsorption capacity of the porous PMMA fiber membrane (iodine: 203 mg/g; phenol: 3.73 mg/g), in contrast to the adsorption capacities of the nonporous PMMA fiber membrane (iodine:117 mg/g; phenol: 1.8 mg/g). A facile, easily accessible approach for fabricating porous fiber membranes is presented in this work, and it is believed that the product may find potential application—as a possible substitute for conventional material—in the removal of organic and inorganic pollutants from water.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5a–f
Fig. 6a–b

References

  1. 1.

    Ohkawa K, Cha DI, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25(18):1600–1605. doi:10.1002/marc.200400253

    Google Scholar 

  2. 2.

    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi:10.1016/s0032-3861(98)00866-0

    Article  CAS  Google Scholar 

  3. 3.

    Matsumoto H, Tanioka A (2011) Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 1:249–264

    Google Scholar 

  4. 4.

    Taylor G (1969) Electrically driven jets. Proc Roy Soc Lond A 313:453–475

    Google Scholar 

  5. 5.

    Vincent Milleret BS, Neuenschwander P, Hall H (2011) Tuning electrospinning parameters for production of 3d-fiber fleeces with increased porosity for soft tissue engineering applications. Eur Cell Mater 21:286–303

    Google Scholar 

  6. 6.

    Moon S, Choi J, Farris RJ (2008) Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning. Fiber Polym 9(3):276–280. doi:10.1007/s12221-008-0044-y

    Google Scholar 

  7. 7.

    Zhang LF, Hsieh YL (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17(17):4416–4423. doi:10.1088/0957-4484/17/17/022

    Article  CAS  Google Scholar 

  8. 8.

    Kumakura M (2001) Preparation method of porous polymer materials by radiation technique and its application. Polym Adv Technol 12(7):415–421. doi:10.1002/pat.69

    Article  CAS  Google Scholar 

  9. 9.

    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 7(3):216–223. doi:10.1088/0957-4484/7/3/009

    Google Scholar 

  10. 10.

    Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  CAS  Google Scholar 

  11. 11.

    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mat Today 9(3):40–50

    Google Scholar 

  12. 12.

    Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mat 13(1):70–72. doi:10.1002/1521-4095(200101)13:1<70::aid-adma70>3.3.co;2–8

    Google Scholar 

  13. 13.

    Bognitzki M, Frese T, Steinhart M, Greiner A, Wendorff JH, Schaper A, Hellwig M (2001) Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends. Polym Eng Sci 41(6):982–989. doi:10.1002/pen.10799

    Article  CAS  Google Scholar 

  14. 14.

    McCann JT, Marquez M, Xia YN (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437. doi:10.1021/ja056810y

    Article  CAS  Google Scholar 

  15. 15.

    Li D, Xia YN (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. doi:10.1021/nl049590f

    Article  CAS  Google Scholar 

  16. 16.

    Park JY, Han BW, Lee IH (2007) Preparation of electrospun porous ethyl cellulose fiber by THF/DMAc binary solvent system. J Ind Eng Chem 13(6):1002–1008

    CAS  Google Scholar 

  17. 17.

    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, Singapore

  18. 18.

    Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. doi:10.1021/ma020444a

    Article  CAS  Google Scholar 

  19. 19.

    Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. doi:10.1021/ma0351975

    Google Scholar 

  20. 20.

    Haider S, Al-Masry WA, Bukhari N, Haider A (2010) Removing heavy metals from water. Plast Res Online. http://www.4spepro.org/view.php?article=003042-2010-06-26&amp;category=Plastics+Nanotechnology

  21. 21.

    Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328(1–2):90–96. doi:10.1016/j.memsci.2008.11.046

    Article  CAS  Google Scholar 

  22. 22.

    Karim MM, Das AK, Lee SH (2006) Treatment of colored effluent of the textile industry in Bangladesh using zinc chloride treated indigenous activated carbons. Anal Chim Acta 576(1):37–42. doi:10.1016/j.aca.2006.01.079

    Article  CAS  Google Scholar 

  23. 23.

    Low KS, Lee CK (1997) Quaternized rice husk as sorbent for reactive dyes. Bioresour Technol 61(2):121–125. doi:10.1016/s0960-8524(97)00054-0

    Article  CAS  Google Scholar 

  24. 24.

    Singh BK, Rawat NS (1994) Comparative sorption equilibrium studies of toxic phenols on flyash and impregnated flyash. J Chem Technol Biotechnol 61(4):11. doi:10.1002/jctb.280610109

    Google Scholar 

  25. 25.

    Bhattacharya AK (1984) Removal of cadmium(II) by low cost adsorbents. J Environ Eng ASCE 110(1):110–122

    Google Scholar 

  26. 26.

    Lee KH, Kim HY, Ryu YJ, Kim KW, Choi SW (2003) Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends. J Polym Sci Polym Phys 41(11):1256–1262. doi:10.1002/polb.10482

    Google Scholar 

  27. 27.

    Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 23(1):015401. doi:10.1088/0957-4484/23/1/015401

    Google Scholar 

  28. 28.

    Jayaraman K, Kotaki M, Zhang YZ, Mo XM, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4(1–2):52–65. doi:10.1166/jnn.2004.078

    CAS  Google Scholar 

  29. 29.

    Yong Liu J-HH, Jian-yong Y, Zeng H-m (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57(4):632–636. doi:10.1002/pi.2387

    Google Scholar 

  30. 30.

    Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. doi:10.1016/s0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  31. 31.

    Fong H, Chun I, Reneker DH (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi:10.1016/s0032-3861(99)00068-3

    Article  CAS  Google Scholar 

  32. 32.

    Haider S, Al-Zeghayer YS, A.Al-Masry W, Ali FAA (2012) Fabrication of chitosan nanofibers membrane with improved stability and britility. Adv Sci Lett 17:217–223

    Google Scholar 

  33. 33.

    Jeun J-P, Kim Y-H, Lim Y-M, Choi J-H, Jung C-H, Kang P-H, Nho Y-C (2007) Electrospinning of poly(L-lactide-co-D,L-lactide). J Ind Eng Chem 13(4):592–596

    Google Scholar 

  34. 34.

    Lin JY, Tian F, Shang YW, Wang FJ, Ding B, Yu JY (2012) Facile control of intra-fiber porosity and inter-fiber voids in electrospun fibers for selective adsorption. Nanoscale 4(17):5316–5320. doi:10.1039/c2nr31515g

    Article  CAS  Google Scholar 

  35. 35.

    Durrat FS, Assawi IM (2010) Porosity of activated carbons obtained from chemical activation of peanut shells. Al-satil J 4(8):71–80

    Google Scholar 

  36. 36.

    Kljajevic LM, Jovanovic VM, Stevanovic SI, Bogdanov ZD, Kaludjerovic BV (2011) Influence of chemical agents on the surface area and porosity of active carbon hollow fibers. J Serb Chem Soc 76(9):1283–1294. doi:10.2298/jsc100226112k

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Laboratory Program (2011–0020264) from the Ministry of Education, Science, and Technology of Korea and by Kyungpook National University Research Fund 2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Inn-Kyu Kang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bae, HS., Haider, A., Selim, K.M.K. et al. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine. J Polym Res 20, 158 (2013). https://doi.org/10.1007/s10965-013-0158-9

Download citation

Keywords

  • PMMA
  • Controlled humidity
  • Porous fibers
  • Adsorption