Influence of talc morphology on the mechanical properties of talc filled polypropylene

  • Luciana A. Castillo
  • Silvia E. BarbosaEmail author
  • Numa J. Capiati
Original Paper


Injected polypropylene (PP)/talc composites were studied to evaluate the influence of different talc morphologies on their final mechanical properties. Talc genesis is responsible for type and content of associated minerals, crystalline degree, particle size distribution, and specially, morphology. Consequently, when talc is incorporated into PP, differences in the genesis mean differences in particle morphology and may influence the composite properties. Two talc samples having predominant macro and microcrystalline morphologies were used to prepare two composite sets to be tested. Thermal and mechanical properties of each PP/talc composites set were measured, analyzed and discussed comparatively. The results reveal that the main influences of talc morphology are given on modulus, yield strength and elongation at break of PP/talc composites. Macrocrystalline morphology of talc induces better composite mechanical properties than microcrystalline one. This behavior could be explained by talc characteristics as lamellarity, crystalline character and crystallinity degree.


Mechanical properties Talc morphology Polypropylene Composites 


  1. 1.
    Pukánsky B (1995) In: Karger-Kocsis J (ed) Polypropylene. Structure, blends and composites. Chapman & Hall, UKGoogle Scholar
  2. 2.
    Piniazkiewicz RJ, Mc Carty EF, Genco NA (1994) In: Carr DD (ed) Industrials minerals and rocks, 6th edn. SME Inc, ColoradoGoogle Scholar
  3. 3.
    de Parseval P, Moine B, Fortuné JP, Ferret J (1993) In: Fenoll Hach-Ali P, Torres-Ruiz J, Gervilla F (eds) Current research in geology applied to ore deposits. University of Granada, SpainGoogle Scholar
  4. 4.
    Castillo L, Barbosa S, Maiza P, Capiati N (2011) J Mater Sci 46:2578–2586CrossRefGoogle Scholar
  5. 5.
    Castillo L, Barbosa S, Capiati N (2013) Polym Eng Sci 53:89–95CrossRefGoogle Scholar
  6. 6.
    Holland HJ, Murtagh MJ (2000) JCPDS-international centre for diffraction data 2000 advances in X-ray. Analysis 42:421–428Google Scholar
  7. 7.
    McCarthy EF, Genco N, Reade E Jr (2006) In: Kogel JE, Trivedi NC, Barker JM, Krukowski (eds) Industrial minerals and rock: commodities, markets and uses, 7th edn. Society for Mining, Metallurgy and Exploration Inc, USAGoogle Scholar
  8. 8.
    Rabello MS, White JR (1996) Polym Compos 17:691–704CrossRefGoogle Scholar
  9. 9.
    Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker Inc, New YorkGoogle Scholar
  10. 10.
    Gioffredi E (2012) Polymer crystallization: micro and nano filler effects on isotactic polypropylene. Ph.D. Thesis, Politecnico de Torino, ItalyGoogle Scholar
  11. 11.
    Castillo L, Barbosa S, Capiati N (2012) J Appl Polym Sci 126:1763–1772CrossRefGoogle Scholar
  12. 12.
    Rybnikar FJ (1989) Appl Polym Sci 38:1479–1490CrossRefGoogle Scholar
  13. 13.
    Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffret F, Micoud P, de Parseval P, Salvi S, Bourgerette C, Ferret J, Saint-Gerard Y, Buratto S, Fortuné JP (2002) J Mater Sci 37:1561–1573CrossRefGoogle Scholar
  14. 14.
    Addink EJ, Beintema J (1961) Polymer 2:185–193CrossRefGoogle Scholar
  15. 15.
    Ferreira Custódio FJ (2009) Structure development and properties in advanced injection molding processes development of a versatile numerical tool. Ph.D. Thesis, Eindhoven, Technische Universiteit EindhovenGoogle Scholar
  16. 16.
    Alonso M, Velasco JI, de Saja JA (1997) Eur Polym J 33:255–262CrossRefGoogle Scholar
  17. 17.
    Fujiyama M, Wakino T (1991) J Appl Polym Sci 42:9–20CrossRefGoogle Scholar
  18. 18.
    Pukánszky B, Belina K, Rockenbauer A, Maurer FH (1994) Composites 25:205–214CrossRefGoogle Scholar
  19. 19.
    Zilhif AM, Ragosta G (1991) Mater Lett 11:368–372CrossRefGoogle Scholar
  20. 20.
    Karger Kocsis J, Varga JJ (1996) J Appl Polym Sci 92:291–300CrossRefGoogle Scholar
  21. 21.
    Tjong SC, Shen SJ, Li RK (1996) Polymer 37:2309–2316CrossRefGoogle Scholar
  22. 22.
    Chen Z, Finet MC, Liddell K, Thompson DP, White JR (1992) J Appl Sci 46:1429–1437CrossRefGoogle Scholar
  23. 23.
    Morales E, White JR (1988) J Mater Sci 23:3612–3622CrossRefGoogle Scholar
  24. 24.
    Xavier SF (1991) In: Utracki LA (ed) Two-phase polymer systems. Hanser Publishers, MunichGoogle Scholar
  25. 25.
    Denac M, Musil V, Makaroviĉ M (1998) Kovine Zlit Tehnol 32:69–72Google Scholar
  26. 26.
    Chow TS (1978) J Polym Sci: Polym Phys 16:959–965CrossRefGoogle Scholar
  27. 27.
    Clark RJ, Steen WP (2003) In: Karian H (ed) Handbook of polypropylene and polypropylene composites. Wiley, USAGoogle Scholar
  28. 28.
    Pukánszky B (1990) Composites 21:255–262CrossRefGoogle Scholar
  29. 29.
    Fu S, Feng X, Lauke B, Mai Y (2008) Composites: Part B 39:933–961CrossRefGoogle Scholar
  30. 30.
    van Dommelen J (2003) PhD Thesis Technische Universiteit EindhovenGoogle Scholar
  31. 31.
    Echevarria GG, Eguiazabal JI, Nazabal J (1998) Eur Polym J 34:1213–1219CrossRefGoogle Scholar
  32. 32.
    Song J, Prox M, Weber A, Ehrenstein GW (1995) In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites. Chapman & HaH, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luciana A. Castillo
    • 1
  • Silvia E. Barbosa
    • 1
    Email author
  • Numa J. Capiati
    • 1
  1. 1.Planta Piloto de Ingeniería Química (UNS - CONICET)Bahía BlancaArgentina

Personalised recommendations