Highly aligned narrow diameter chitosan electrospun nanofibers

  • Sajjad Haider
  • Yousef Al-Zeghayer
  • Fekri A. Ahmed Ali
  • Adnan Haider
  • Asif Mahmood
  • Waheed A. Al-Masry
  • Muhammad Imran
  • Muhammad Omer Aijaz
Original Paper


Random and highly aligned bead-free chitosan nanofibers (NFs) were successfully prepared via electrospinning by keeping the applied voltage (22 kV), flow rate (0.4 mL h−1), needle diameter (0.8 mm), and needle to collector distance (100 mm) constant while varying the solution concentration and collector rotation speed. No electrospinning was observed for lower solution concentrations, i.e., 1–3 wt% (w/v), whereas a decrease in the number and size of beads and microspheres, and bead-free NFs were obtained when the concentration of solution was increased from 4 to 6 wt%. Increase in the polymer concentration increased the solution viscosity (from 3.53 to 243 mPa s) and conductivity (from 29.80 to 192.00 μs cm−1) to critical values, which led to beadless NFs. The optimized conditions (i.e., concentration of solution 6 wt%, applied electrical potential 22 kV, flow rate 0.4 mL h−1, needle diameter 0.8 mm, and needle to collector distance 100 mm) were further used for the alignment of chitosan NFs. The alignment of the NFs increased from 35.6 to 94.4 % and the diameter decreased from 163.9 to 137.4 nm as the rotation speed of the cylindrical collector drum was increased from 2.09 to 21.98 m s−1. The aligned and small diameter chitosan NFs might find potential applications in biomedical, environmental, solar fuel cell applications, etc. Several target devices and polymer systems in the literature have been used to obtain aligned NFs; however, almost no work has been reported on individual chitosan alignment.


Chitosan Aligned Nanofibers Fine diameter 


  1. 1.
    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46:5670–5703CrossRefGoogle Scholar
  2. 2.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent 692,631Google Scholar
  3. 3.
    Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1,975,504Google Scholar
  4. 4.
    Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35:151–160CrossRefGoogle Scholar
  5. 5.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRefGoogle Scholar
  6. 6.
    Jian F, Xungai W, Tong L (2011) Functional applications of electrospun nanofibers. In: Lin T (ed) Nanofibers: production, properties and functional applications. InTech, Rijeka, pp 287–326Google Scholar
  7. 7.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  8. 8.
    Usman A, Yaqiong Z, Xungai W, Tong L (2011) Electrospinning of continuous nanofiber bundles and twisted nanofiber yarns. In: Lin T (ed) Nanofibers: production, properties and functional applications. InTech, Rijeka, pp 420–427Google Scholar
  9. 9.
    Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605CrossRefGoogle Scholar
  10. 10.
    Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40:7397–7407CrossRefGoogle Scholar
  11. 11.
    Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polymer Sci 102:1285–1290CrossRefGoogle Scholar
  12. 12.
    Zahedia P, Rezaeiana I, Ranaei-Siadatb SO, Jafaria SH, Supaphol PA (2010) Review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 21:77–95Google Scholar
  13. 13.
    Yu DG, Zhu LM, White K, White CB (2009) Electrospun nanofiber-based drug delivery systems. Health 1:67–75CrossRefGoogle Scholar
  14. 14.
    Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211CrossRefGoogle Scholar
  15. 15.
    Shim HS, Kim JW, Kim WB (2009) Fabrication and optical properties of conjugated polymer composited multi-arrays of TiO2 nanowires via sequential electrospinning. J Nanosci Nanotechnol 9:4721–4726CrossRefGoogle Scholar
  16. 16.
    Liao IC, Chew SY, Leong KW (2006) Aligned core-shell Nanofibers delivering bioactive proteins. Nanomedicine (Lond) 1:465–471CrossRefGoogle Scholar
  17. 17.
    Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10:1324–1328CrossRefGoogle Scholar
  18. 18.
    Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30:1204–1210CrossRefGoogle Scholar
  19. 19.
    Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12:384–390CrossRefGoogle Scholar
  20. 20.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRefGoogle Scholar
  21. 21.
    Cooper A, Jana S, Bhattarai N, Zhang M (2010) Aligned chitosan-based nanofibers for enhanced myogenesis. J Mater Chem 20:8904–8911CrossRefGoogle Scholar
  22. 22.
    NASA Langley’s (2008) Highly aligned electrospun fibers and mats. NP-2008-04-77-LaRC:1(4). http://technologygateway.nasa.gov/docs/TOA_LARC04_AlignElectroNano_16web.pdf. Accessed 11 Aug 2012
  23. 23.
    Sundaray B, Subramanian V, Natarajan TS, Xiang RZ, Chang CC, Fann WS (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84:1222–1224CrossRefGoogle Scholar
  24. 24.
    Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4:2215–2218CrossRefGoogle Scholar
  25. 25.
    Chuangchote S, Supaphol P (2006) Fabrication of aligned poly(vinyl alcohol) nanofibers by electrospinning. J Nanosci Nanotechnol 6:125–129Google Scholar
  26. 26.
    Khamforoush M, Mahjob M (2011) Modification of the rotating jet method to generate highly aligned electrospun nanofibers. Mater Lett 65:453–455CrossRefGoogle Scholar
  27. 27.
    Park SH, Yang DY (2011) Fabrication of aligned electrospun nanofibers by inclined gap method. J Appl Polymer Sci 120:1800–1807CrossRefGoogle Scholar
  28. 28.
    Afifi AM, Yamamoto M, Yamane H, Kimura Y, Salmawy AE, Nakano S (2011) Electrospinning and characterization of aligned nanofibers from chitosan/polyvinyl alcohol mixtures: comparison of several target devices newly designed. Sen-I Gakkaishi 67:103–108CrossRefGoogle Scholar
  29. 29.
    Mincheva R, Manolova N, Rashkov I (2007) Bicomponent aligned nanofibers of N-carboxyethyl chitosan and poly(vinyl alcohol). Eur Polym J 43:2809–2818CrossRefGoogle Scholar
  30. 30.
    Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328:90–96CrossRefGoogle Scholar
  31. 31.
    Taylor G (1969) Electrically driven jets. Proc R Soc Lond A 313:453–475CrossRefGoogle Scholar
  32. 32.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) Introduction to electrospinning and nanofibers. World Scientific, SingaporeCrossRefGoogle Scholar
  33. 33.
    Liu Y, He JH, Yu JY, Zeng HM (2008) Controlling numbers and sizes of beads in electrospun nanofibers. Polym Int 57:632–636CrossRefGoogle Scholar
  34. 34.
    Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 50:189–200CrossRefGoogle Scholar
  35. 35.
    Homayoni H, Abdolkarim S, Ravandi H, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRefGoogle Scholar
  36. 36.
    Rutledge GC, Warner SB, Ugbolue SC (2001) Electrostatic spinning and properties of ultrafine fibres. National Textile Centre Annual Report. http://www.ntcresearch.org/pdf-rpts/AnRp04/M01-MD22-A4.pdf. Accessed 22 Feb 2013
  37. 37.
    Afifi AM, Nakajima H, Yamane H, Kimura Y, Nakano S (2009) Fabrication of aligned poly(l-lactide) fibers by electrospinning and drawing. Macromol Mater Eng 294:658–665CrossRefGoogle Scholar
  38. 38.
    Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12:013002CrossRefGoogle Scholar
  39. 39.
    Liu L (2006) Studies on deposition and alignment of electrospun nanofiber assemblies. University of Nebraska, Lincoln. http://digitalcommons.unl.edu/dissertations/AAI3296165. Accessed 11 Aug 2012

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sajjad Haider
    • 1
  • Yousef Al-Zeghayer
    • 2
  • Fekri A. Ahmed Ali
    • 1
  • Adnan Haider
    • 3
  • Asif Mahmood
    • 1
  • Waheed A. Al-Masry
    • 1
  • Muhammad Imran
    • 1
  • Muhammad Omer Aijaz
    • 1
  1. 1.Department of Chemical Engineering, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Industrial Catalysis Research, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Polymer ScienceKyungpook National UniversityDaeguSouth Korea

Personalised recommendations