Skip to main content
Log in

Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The existence of ether-bridged condensation products in urea-formaldehyde (UF) resins is still disputed in the literature as these products have never been isolated or fully characterized. Using 1H-15N gradient heteronuclear single quantum correlation (gHSQC) experiment, 1H-13C gHSQC experiment and 1H-13C gradient heteronuclear multiple bond correlation (gHMBC) experiment a, methylolurea hemiformal compound (urea compound with oligomeric chains \(-\rm{CH}_{2}\;{\rm O[CH}_{2}{\rm O]}{\mathrm {n}}{\rm H}\) and \(n\geq 1\)) and a symmetrical compound, most likely an ether-bridged condensation product, in a UF resin sample were characterized. The results were confirmed by 2D NMR 13C-13C gradient correlated spectroscopy (gCOSY) experiment using 13C labeled ureaformaldehyde samples. Spectroscopic chemical shifts of the proposed ether-bridged condensation product in 15N, 13C, 1H NMR spectroscopy were assigned. Furthermore, individual peak assignments are provided for the methylolurea hemiformal moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dunky M, Niemz P (2002) Holzwerkstoffe und Leime. Springer, Berlin

    Book  Google Scholar 

  2. Pizzi A (1994) Advanced wood adhesives technology. Marcel Dekker, New York

    Google Scholar 

  3. Meyer B (1979) Urea-Formaldeyde Resins. Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  4. Marutzky R, Roffael E, Ranta L (1979) Holz als Roh Werkst 37:303–307

    Article  CAS  Google Scholar 

  5. Marutzky R, Ranta L (1980) Holz als Roh Werkst 38:217–223

    Article  CAS  Google Scholar 

  6. Myers GE (1984) Forest Prod J 34:35–41

    CAS  Google Scholar 

  7. Ferg EE, Pizzi A, Levendis DC (1993) J Appl Polym Sci 50:907–915

    Article  CAS  Google Scholar 

  8. Park BD, Kim JW (2008) J Appl Polym Sci 108:2045–2051

    Article  CAS  Google Scholar 

  9. Park BD, Kang EC, Park JY (2006) J Appl Polym Sci 100:422–427

    Article  CAS  Google Scholar 

  10. Park BD, Kang EC, Park JY (2006) J Appl Polym Sci 101:1787–1792

    Article  CAS  Google Scholar 

  11. Park BD, Kang EC, Park JY (2008) J Appl Polym Sci 110:1573–1580

    Article  CAS  Google Scholar 

  12. Siimer K, Kaljuvee T, Christjanson P (2003) J Therm Anal Calorim 72:607–617

    Article  CAS  Google Scholar 

  13. Siimer K, Christjanson P, Kaljuvee T, Pehk T, Lasn I, Saks I (2008) J Therm Anal Calorim 92:19–27

    Article  CAS  Google Scholar 

  14. Siimer K, Christjanson P, Kaljuvee T, Pehk T, Saks I (2009) J Therm Anal Calorim 97:459–466

    Article  CAS  Google Scholar 

  15. Siimer K, Kaljuvee T, Pehk T, Lasn I (2010) J Therm Anal Calorim 99:755–762

    Article  CAS  Google Scholar 

  16. Ludlam PR (1973) Analyst 98:107–115

    Article  CAS  Google Scholar 

  17. Ludlam PR, King JG, Anderson RM (1986) Analyst 111:1265–1271

    Article  CAS  Google Scholar 

  18. Braun D, Bayersdorf F (1979) Angew Makromol Chem 83:21–36

    Article  CAS  Google Scholar 

  19. Kumlin K, Simonson R (1978) Angew Makromol Chem 68:175–184

    Article  CAS  Google Scholar 

  20. Kumlin K, Simonson R (1980) Angew Makromol Chem 86:143–156

    Article  CAS  Google Scholar 

  21. Becher HJ (1956) Chem Ber 8:1951–1971

    Article  Google Scholar 

  22. Jada S (1988) J Appl Polym Sci 35:1573–1592

    Article  CAS  Google Scholar 

  23. Carvalho LMH, Costa MRPFN, Costa CAV (2006) J Appl Polym Sci 102:5977–5987

    Article  CAS  Google Scholar 

  24. Rammon RM, Johns WE, Magnuson J, Dunker AK (1986) J Adhes 19:115–135

    Article  CAS  Google Scholar 

  25. Despres A, Pizzi A, Pasch H, Kandelbauer A (2007) J Appl Polym Sci 106:1106–1128

    Article  CAS  Google Scholar 

  26. Kveton R (1956) Collect Czechoslov Chem Commun 21:593–606

    CAS  Google Scholar 

  27. Kumlin K, Simonson R (1981) Angew Makromol Chem 93:27–42

    Article  CAS  Google Scholar 

  28. Steinhof O (2010) PhD Thesis. Universität Stuttgart, Cuivilier Verlag Göttingen

  29. Goldschmidt C (1896) Ber Dtsch Chem Ges 29:2438–2439

    Article  CAS  Google Scholar 

  30. Goldschmidt C (1897) Chem-Ztg 46:460

    Google Scholar 

  31. De Jong JI, De Jonge J (1953) Recl Trav Chim Pays-Bas 72:139–156

    Article  Google Scholar 

  32. Staudinger H, Wagner K (1954) Makromol Chem 12:168–235

    Article  CAS  Google Scholar 

  33. Zigeuner G, Pitter R (1955) Monatsh Chem 86:57–68

    Article  CAS  Google Scholar 

  34. Chuang I, Maciel G (1992) Macromolecules 25:3204–3226

    Article  CAS  Google Scholar 

  35. Christjanson P, Siimer K, Pehk T, Lasn I (2002) Holz Roh-Werkst 60:379–384

    Article  CAS  Google Scholar 

  36. Christjanson P, Pehk T, Siimer K (2006) Proc Est Acad Sci Chem 55:212–225

    CAS  Google Scholar 

  37. Soulard C, Kamoun C, Pizzi A (1999) J Appl Polym Sci 72:277–289

    Article  CAS  Google Scholar 

  38. Mejdell T, Schjonsby HK (2004) Macromol Symp 206:241–254

    Article  CAS  Google Scholar 

  39. Horn V, Benndorf G, Roedler KP (1978) Plaste Kautsch 25:570–575

    CAS  Google Scholar 

  40. Zigeuner G, Knierzinger W, Voglar K, Wiesenberger E, Sobotka M (1951) Monatsh Chem 82:847–855

    Article  CAS  Google Scholar 

  41. Zigeuner G, Voglar K, Pitter R (1954) Monatsh Chem 85:1196–1207

    Article  CAS  Google Scholar 

  42. Chiavarini M, Del Fanti N, Bigatto R (1975) Angew Makromol Chem 46:151–162

    Article  CAS  Google Scholar 

  43. Kambanis SM, Vasishth RC (1971) J Appl Polym Sci 15:1911–1919

    Article  CAS  Google Scholar 

  44. De Breet AJJ, Dankelman W, Huysmans WGB, De Wit J (1977) Angew Makromol Chem 62:7–31

    Article  Google Scholar 

  45. Ebdon J, Heaton PE (1977) Polymer 18:971–974

    Article  CAS  Google Scholar 

  46. Tomita B, Hatono S (1978) J Polym Sci Polym Chem Ed 16:2509–2525

    Article  CAS  Google Scholar 

  47. Taylor R, Pragnell R, McLaren J, Snape C (1982) Talanta 29:489–494

    Article  CAS  Google Scholar 

  48. Siimer K, Pehk T, Christjanson P (1999) Macromol Symp 148:149–156

    Article  CAS  Google Scholar 

  49. Kim MG (1999) J Polym Sci Polym Chem 377:995–1007

    Article  Google Scholar 

  50. Tohmura S, Hse C, Higuchi M (2000) J Wood Sci 46:303–309

    Article  CAS  Google Scholar 

  51. Park BD, Kim YS, Singh AP, Lim KP (2003) J Appl Polym Sci 88:2677–2687

    Article  CAS  Google Scholar 

  52. Ebdon JR, Heaton PE, Huckerby TN, O’Rourke WTS, Parkin J (1984) Polymer 25:821–825

    Article  CAS  Google Scholar 

  53. Chuang I, Maciel GE (1994) Polymer 35:1621–1628

    Article  CAS  Google Scholar 

  54. Angelatos AS, Burgar MI, Dunlo N, Separovic F (2004) J Appl Polym Sci 91:3504–3512

    Article  CAS  Google Scholar 

  55. Philbrook A, Blake CJ, Dunlop N, Easton CJ, Keniry MA, Simpson JS (2005) Polymer 46:2153–2156

    Article  CAS  Google Scholar 

  56. Ebdon JR, Hunt BJ, O’Rourke WTS (1987) Brit Polym J 19:197–203

    Article  CAS  Google Scholar 

  57. Kibrik EJ, Steinhof O, Scherr G, Thiel WR, Hasse H (2012) J Appl Polym Sci. doi:10.1002/app.38630

    Google Scholar 

  58. Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Pure Appl Chem 80:59–84

    Article  CAS  Google Scholar 

  59. Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) J Biomol NMR 6:135–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Bernd Seemann and Dr. Peter Dvortsak from Bruker BioSpin GmbH for their advice and technical support. Measurements on the 400 MHz Advance III spectrometer were conducted at Bruker facilities in Rheinstetten, Germany. Financial support for this work by BASF SE, Ludwigshafen, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éléonore J. Kibrik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kibrik, É.J., Steinhof, O., Scherr, G. et al. Proof of ether-bridged condensation products in UF resins by 2D NMR spectroscopy. J Polym Res 20, 79 (2013). https://doi.org/10.1007/s10965-013-0079-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0079-7

Keywords

Navigation