Skip to main content
Log in

Ethylene polymerization over homogeneous Bis(imino)pyridine vanadium catalysts: data on the number and reactivity of active sites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Method of polymerization quenching with radioactive carbon monoxide (14СО) has been used to determine the number of active centers (С P ) and propagation rate constants (k P ) for ethylene polymerization over the homogeneous catalysts 2,6-R2LVCl3+MAO (L: 2,6-(C6H3N=CMe)2C5H3N, R=Me, Et). For both catalysts the maximum number of active centers at 60 °C was found to be 0.42–0.50 mol molV −1 and the k P values—(16.4–20.0) × 103 L mol−1 s−1. It has been shown that noticeable decrease in the catalysts activity with polymerization time results from the decrease in the active centers number and simultaneous transformation of some part of the initial centers into a new ones with lower reactivity. Analysis of the С P and k P values, measured at different polymerization times, together with the values of the polyethylene molecular-weight distribution, allowed to calculate the content of the active centers of both types and the k P values of these centers. For the 2,6-Et2LVCl3+МАО catalyst, the effect of polymerization temperature on the С P and k P values has been studied. It has been found that with polymerization temperature growth from 25 to 60 °С, the С P value substantially increases. As a result, the value of the effective activation energy (E eff  = 22.6 kcal mol−1) noticeably exceeded that of the activation energy of propagation reaction (E P  = 14.2 kcal mol−1). It is proposed that the reason for the unusually high E P value is formation of “dormant” sites with vanadium-polymer bond at lower polymerization temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Britovsek GJ, Gibson VC, Kimberley BS, Maddox PJ, McTavish SJ, Solan GA, White AJ, Williams DJ (1998) Chem Commun 7:849–850

    Google Scholar 

  2. Small BL, Brookhart M, Bennet AM (1998) J Am Chem Soc 120:4049–4050

    Article  CAS  Google Scholar 

  3. Britovsek GJP, Bruse M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Stromberg S, White AJ, Williams DJ (1999) J Am Chem Soc 121:8728–8740

    Article  CAS  Google Scholar 

  4. Kumar KR, Sivaram S (2000) Macromol Chem Phys 210:1513–1520

    Article  Google Scholar 

  5. Semikolenova NV, Zakharov VA, Talsi EP, Babushkin DE, Sobolev AP, Echevskaya LG, Khusniyarov MM (2002) J Mol Catal A Chem 182:283–294

    Article  Google Scholar 

  6. Talsi EP, Babushkin DE, Semikolenova NV, Zudin VN, Panchenko VN, Zakharov VA (2001) Macromol Chem Phys 202:2046–2051

    Article  CAS  Google Scholar 

  7. Bryliakov KP, Semikolenova NV, Zakharov VA, Talsi EP (2004) Organometallics 23:5375–5378

    Article  CAS  Google Scholar 

  8. Britovsek GJP, Clentsmith GKB, Gibson VC, Goodgame DML, McTavish SJ, Pankhurst QA (2002) Catal Commun 3:207–211

    Article  CAS  Google Scholar 

  9. Bart SC, Chlopek K, Bill E, Bouwkamp MW, Lobkovsky E, Neese F, Wieghardt K, Chirik PJ (2006) J Am Chem Soc 128:13901–13912

    Article  CAS  Google Scholar 

  10. Castro PM, Lahtinen P, Axenov K, Viidanoja J, Kotiaho T, Leskela M, Repo T (2005) Organometallics 24:3664–3670

    Article  CAS  Google Scholar 

  11. Humphries MJ, Tellmann KP, Gibson VC, White AJP, Williams DJ (2005) Organometallics 24:2039–2050

    Article  CAS  Google Scholar 

  12. Kooistra TM, Knijnenburg Q, Smits JMM, Horton AD, Budzelaar PHM, Gal AW (2001) Angew Chem Int Ed 40:4719–4722

    Article  CAS  Google Scholar 

  13. Soshnikov IE, Semikolenova NV, Bushmelev AN, Bryliakov KP, Lyakin OY, Redshaw C, Zakharov VA, Talsi EP (2009) Organometallics 28:6003–6013

    Article  CAS  Google Scholar 

  14. Barabanov AA, Bukatov GD, Zakharov VA, Semikolenova NV, Echevskaja LG, Matsko MA (2005) Macromol Chem Phys 206:2292–2298

    Article  CAS  Google Scholar 

  15. Barabanov AA, Bukatov GD, Zakharov VA, Semikolenova NV, Echevskaja LG, Matsko MA (2008) Macromol Chem Phys 209:2510–2515

    Article  CAS  Google Scholar 

  16. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1203

    Article  CAS  Google Scholar 

  17. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283–315

    Article  CAS  Google Scholar 

  18. Gibson VC, Redshaw C, Solan GA (2007) Chem Rev 107:1745–1776

    Article  CAS  Google Scholar 

  19. Abu-Surrah A, Ibrahim KA, Abdalla MY, Issa AA (2011) J Polym Res 18:59–66

    Article  CAS  Google Scholar 

  20. Damavandi S, Galland GB, Zohuri GH, Sandaroos R (2011) J Polym Res 18:1059–1065

    Article  CAS  Google Scholar 

  21. Damavandi S, Zohuri GH, Sandaroos R, Ahmadjo S (2012) J Polym Res 19:9796

    Article  Google Scholar 

  22. Jiang H, He F, Wang H (2009) J Polym Res 16:183–189

    Article  Google Scholar 

  23. Cui L, Yu J, Lv Y, Li G, Zhou S (2012) J Polym Res 19:9881

    Article  Google Scholar 

  24. Barabanov AA, Semikolenova NV, Matsko MA, Echevskaya LG, Zakharov VA (2010) Polymer 51:3354–3359

    Article  CAS  Google Scholar 

  25. Reardon D, Conan F, Gambarotta S, Yap G, Wang QY (1999) J Am Chem Soc 121:9318–9325

    Article  CAS  Google Scholar 

  26. Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) J Mol Catal A Chem 222:9–15

    CAS  Google Scholar 

  27. Schmidt R, Welch MB, Knudsen RD, Gottfried S, Alt HG (2004) J Mol Catal A Chem 222:17–25

    CAS  Google Scholar 

  28. Schmidt R, Das PK, Welch MB, Knudsen RD (2004) J Mol Catal A Chem 222:27–45

    CAS  Google Scholar 

  29. Colamarco E, Milione S, Cuomo C, Grassi A (2004) Macromol Rapid Commun 25:450–454

    Article  CAS  Google Scholar 

  30. Lang JRV, Denner CE, Alt HG (2010) J Mol Catal A Chem 322:45–49

    Article  CAS  Google Scholar 

  31. Semikolenova NV, Zakharov VA, Echevskaja LG, Matsko MA, Bryliakov KP, Talsi EP (2009) Catal Today 144:334–340

    Article  CAS  Google Scholar 

  32. Wu J, Pan Q, Rempel GL (2005) J Appl Polym Sci 96:645–649

    Article  CAS  Google Scholar 

  33. Natta G, Pasquon I (1959) Adv Catal 11:1–66

    Article  CAS  Google Scholar 

  34. Barabanov AA, Bukatov GD, Zakharov VA (2008) J Polym Sci A Polym Chem 46:6621–6629

    Article  CAS  Google Scholar 

  35. Zakharov VA, Chumaevskii NB, Bukatov GD, Ermakov YI (1976) Makromol Chem 177:763–775

    Article  CAS  Google Scholar 

  36. Zakharov VA, Ermakov YI (1971) J Polym Sci A1 Polym Chem 9:3129–3146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation of Basic Research, Grant 07-03-00311. The authors wish to thank Dr. L.G. Echevskaya for the study of PE MWD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artem A. Barabanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabanov, A.A., Semikolenova, N.V., Bukatov, G.D. et al. Ethylene polymerization over homogeneous Bis(imino)pyridine vanadium catalysts: data on the number and reactivity of active sites. J Polym Res 19, 9998 (2012). https://doi.org/10.1007/s10965-012-9998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9998-y

Keywords

Navigation