Skip to main content

Advertisement

Log in

Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: effects of composition and isocyanate index

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of polyurethanes (PUs) based on poly (tetramethylene glycol) (PTMG), poly (ethylene adipate) (PEA) diol, polycaprolactone (PCL) diol and castor oil (CO) were synthesized. The tensile, damping and thermal properties were studied systematically in terms of the composition and isocyanate index (R). Results showed that when R is 2, the PUs exhibit a relatively high tensile strength more than 30 MPa. The PTMG-PU, PCL-PU and PEA-PU show high elongation at break compared to the cross-linked CO-PU. When R is 1.5, tensile strengths decrease compared to R is 2. But, the elongations of PTMG-PU, PCL-PU and CO-PU increase. DMA analysis showed that the glass transition temperature (T g ) is increasing as the sequence of PTMG-PU, PCL-PU, PEA-PU and CO-PU. The T g of CO-PU is as high as 60.6 °C when R is 1.5 and 93.4 °C when R is 2. The T g ranges of the other linear PUs are between −50 and −12 °C. The damping temperature ranges of these PUs are relatively broad. Further, TG results showed the start degradation temperatures of them are approx 260 °C. These results show a good guidance to select a kind of PU when prepare the PU-polymer composites for given properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Clemitson IR (2008) Castable polyurethane elastomers. CRC Press, New York

    Book  Google Scholar 

  2. Petrovic ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836

    Article  CAS  Google Scholar 

  3. Krol P (2007) Synthesis methods, chemical structures and phase structures of linear polyurethanes. Prog Mater Sci 52:915–1015

    Article  CAS  Google Scholar 

  4. Howarth GA (2003) Polyurethanes, polyurethane dispersions and polyureas: Past, present and future. Surf Coat IntPart B 86:111–118

    Article  CAS  Google Scholar 

  5. Nakajima-Kambe T, Shigeno-Akutsu Y, Nomura N, Onuma F, Nakahara T (1999) Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl Microbiol Biotechnol 51:134–140

    Article  CAS  Google Scholar 

  6. Spirkova M (2002) Polyurethane elastomers made from linear polybutadiene diols. J Appl Polym Sci 85:84–91

    Article  CAS  Google Scholar 

  7. Oprea S (2011) Effect of the long chain extender on the properties of linear and castor oil cross-linked PEG-based polyurethane elastomers. J Mater Sci 46:2251–2258

    Article  CAS  Google Scholar 

  8. Bae JY, Chung DJ, An JH, Shin DH (1999) Effect of the structure of chain extenders on the dynamic mechanical behaviour of polyurethane. J Mater Sci 34:2523–2527

    Article  CAS  Google Scholar 

  9. Gite VV, Mahulikar PP, Hundiwale DG (2010) Preparation and properties of polyurethane coatings based on acrylic polyols and trimer of isophorone diisocyanate. Prog Org Coat 68:307–312

    Article  CAS  Google Scholar 

  10. Yun SJ, Im H, Kim J (2011) Thermal conductivity and interconnectivity of hexamethylene diisocyanate contained polyurethane grafted multiwall carbon nanotube/polyurethane nanocomposite. Mater Trans 52:564–567

    Article  CAS  Google Scholar 

  11. Barick AK, Tripathy DK (2011) Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. Appl Clay Sci 52:312–321

    Article  CAS  Google Scholar 

  12. Zhang YC, Zhao YH, Kang MQ, Wang XK (2006) Review of polyurethane/layered silicate nanocomposites. Prog Chem 18:59–65

    Google Scholar 

  13. Siddaramaiah B, Shayan MB, Manjula KS, Ranganathaiah C, Rao GVN, Basavalingu B, Byrappa K (2010) Effect of zeolite particulate filler on the properties of polyurethane composites. J Polym Res 17:135–142

    Article  Google Scholar 

  14. Lee Y, Kim BS, Hong JH, Park S, Kim H, Kim IS (2012) Enhanced mechanical properties and pre-tension effects of polyurethane (PU) nanofiber filaments prepared by electrospinning and dry twisting. J Polym Res 19: doi:10.1007/s10965-011-9774-4

  15. Kim BS, Lee DS, Kim SC (1986) Polyurethane-polystyrene interpenetrating polymer networks: effect of photopolymerization temperature. Macromolecules 19:2589–2593

    Article  CAS  Google Scholar 

  16. Matsui M, Munaro M, Akcelrud LC (2011) Chitin-polyurethane networks: correlations between physical properties and composition. J Polym Res 18:2255–2264

    Article  CAS  Google Scholar 

  17. Chen CH, Chen WJ, Chen MH, Li YM (2000) Simultaneous full-interpenetrating polymer networks of blocked polyurethane and vinyl ester Part I. Polymer 41:7961–7967

    Article  CAS  Google Scholar 

  18. Chen S, Wang Q, Wang T (2011) Physical properties of a high molecular weight hydroxyl-terminated polydimethylsiloxane modified castor oil based polyurethane/epoxy interpenetrating polymer network composites. Appl Phys A 103:1047–1052

    Article  CAS  Google Scholar 

  19. Lin J, Yang QZ, Wen XF, Cai ZQ, Pi PH, Cheng J, Yang ZR (2011) Synthesis, characterization, and thermal stability studies of bisphenol-A type novolac epoxy-polyurethane coating systems for in-mould decoration ink applications. J Polym Res 18:1667–1677

    Article  CAS  Google Scholar 

  20. Mosiewicki MA, Casado U, Marcovich NE, Aranguren MI (2012) Moisture dependence of the properties of composites made from tung oil based polyurethane and wood flour. J Polym Res 19: doi: 10.1007/s10965-011-9776-2

  21. Kuta A, Hrdlicka Z, Strachota A, Spirkova M (2009) The influence of macrodiol type on the mechanical properties of polyurethane materials. Mater Manuf Processes 24:1214–1216

    Article  CAS  Google Scholar 

  22. Chen S, Wang Q, Pei X, Wang T (2010) Dynamic mechanical properties of castor oil-based polyurethane/epoxy graft interpenetrating polymer network composites. J Appl Polym Sci 118:1144–1151

    Article  CAS  Google Scholar 

  23. Bistricic L, Baranovic G, Leskovac M, Bajsic EG (2010) Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane-silica nanocomposites. Eur Polym J 46:1975–1987

    Article  CAS  Google Scholar 

  24. Sophiea D, Klempner D, Sendijarevic V, Suthar B, Frisch KC (1994) Interpenetrating polymer networks as energy-absorbing materials. In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks. Amer Chemical Soc, New York, pp 39–75

    Chapter  Google Scholar 

  25. Guo M (2002) Dynamic mechanical thermal analysis of polymer composites. Chemical Industry Press, Beijing

    Google Scholar 

Download references

Acknowledgements

The financial supports from the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51025517), the Innovative Group Foundation of NSFC (Grant No. 50721062), and the 973 Project of China (2007CB607606), the National Defense Basic Scientific Research Project (A1320110011) are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihua Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Wang, Q. & Wang, T. Preparation, tensile, damping and thermal properties of polyurethanes based on various structural polymer polyols: effects of composition and isocyanate index. J Polym Res 19, 9994 (2012). https://doi.org/10.1007/s10965-012-9994-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9994-2

Keywords

Navigation