Skip to main content

Advertisement

Log in

Preparation of diamine-POSS/Ag hybrid microspheres and its application in epoxy resin

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The synthesis of polyhedral oligomeric silsesquioxane (POSS) via hydrolytic co-condensation of phenyltriethoxysilane (PTES) and γ-aminopropyltrieth-oxysilane (APS) was presented in this paper. The microspheres with mean diameter of 1.83 μm were precipitated from solvent phase through self-assembly when solvent phase was changed. After the reduction of hydrazine hydrate, POSS/Ag hybrid microspheres were obtained based on the chelation of external amino-groups to silver ions. The hybrid microspheres modified epoxy resin was also studied in the work. The structure and particle size distribution of POSS, feature and silver content of the POSS/Ag core/shell microspheres, heat resistance, thermal conductivity and comprehensive mechanical properties of the epoxy resin modified by diamine-POSS/Ag were characterized by NMR, FTIR, SEM, Laser Particle Sizer, TGA and Flat Heat Conduction Coefficient, Universal Testing Machine. It was found that POSS was cage-like structures with two amino-groups, amino group content was 2.12 mmol/g and the silver conten was 47.96 %, respectively. When Ag addition reached 5 %, thermal conductivity of the modified epoxy resin has increased fourfold four times greater than pure, and the heat resistance increased by 35 °C. Moreover, the bending strength and impact strength of the modified resin were 127 MPa and 11.94 KJ/m2, respectively, compared with pure epoxy resin, both of which have improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scott D (1946) J Am Chem Soc 68(3):356–358

    Article  CAS  Google Scholar 

  2. Leu C, Chang Y, Wei K (2003) Macromolecules 36(24):9122–9127

    Article  CAS  Google Scholar 

  3. Yoshida M, Roh K, Lahann J (2007) Biomaterials 28(15):2446–2456

    Article  CAS  Google Scholar 

  4. Nair B, Pavithran C (2010) Langmuir 26(2):730–735

    Article  CAS  Google Scholar 

  5. Ghanbari H, Ahmed M, Cousins B, Hamilton G, Seifalian A (2011) Br J Surg 98:22–22

    Google Scholar 

  6. Ni C, Ni G, Zhang L, Mi J, Yao B, Zhu C (2011) J Colloid Interface Sci 362(1):94–99

    Article  CAS  Google Scholar 

  7. Song X, Zhou S, Wang Y, Kang W, Cheng B (2012) J Polymer Res 19(1).

  8. Jeoung E, Carroll J, Rotello V (2002) Chem Commun 14:1510–1511

    Article  Google Scholar 

  9. Cui L, Collet J, Xu G, Zhu L (2006) Chem Mater 18(15):3503–3512

    Article  CAS  Google Scholar 

  10. Zhang W, Fang B, Walther A, Muller A (2009) Macromolecules 42(7):2563–2569

    Article  CAS  Google Scholar 

  11. Pang J, Zhang H, Li L, Wu Q, Lin J (2012) New Carbon Materials 27(2):141–145

    CAS  Google Scholar 

  12. Ervithayasuporn V, Abe J, Wang X, Matsushima T, Murata H, Kawakami Y (2010) Tetrahedron 66(48):9348–9355

    Article  CAS  Google Scholar 

  13. Lu X, Tan C, Xu J, He C (2003) Synth Met 138(3):429–440

    Article  CAS  Google Scholar 

  14. Cho H, Tokoi Y, Tanaka S, Suematsu H, Suzuki T, Jiang W, Niihara K, Nakayama T (2011) Compos Sci Tech 71(8):1046–1052

    Article  CAS  Google Scholar 

  15. Li L, Li X, Yang R (2012) J Appl Polymer Sci 124(5):3807–3814

    Article  CAS  Google Scholar 

  16. Jeziorska R, Swierz-Motysia B, Szadkowska A, Marciniec B, Maciejewski H, Dutkiewicz M, Leszczynska I (2011) Polimery 56(11–12):809–816

    CAS  Google Scholar 

  17. Cai H, Xu K, Liu H, Liu X, Fu Z, Chen M (2011) Polym Compos 32(9):1343–1351

    Article  CAS  Google Scholar 

  18. Fasce D, Williams R, Mechin F, Pascault J, Llauro M, Petiaud R (1999) Macromolecules 32(15):4757–4763

    Article  CAS  Google Scholar 

  19. Bai X, Sun G, Guan D, Mu J, Liu B, Jiang C, Zhang C (2012) Chem J Chin Univ 33(4):856–860

    CAS  Google Scholar 

  20. Engstrand J, Lopez A, Engqvist H, Persson C (2012) Biomed Mater 7(3).

  21. Liu S, Lang X, Ye H, Zhang S, Zhao J (2005) Eur Polym J 41(5):996–1001

    Article  CAS  Google Scholar 

  22. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G (2011) J Polymer Res 18(4):721–729

    Article  CAS  Google Scholar 

  23. Qian X, Song L, Hu Y, Yuen R (2012) J Polymer Res 19(6).

  24. Zhang BL, Zhang QY, Zhang HP, Li XJ, Fan XL, Lei XF (2012) Chin J Inorg Chem 28(3):503–508

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No.51173146, NO.51173147), National Basic Research Program of China (2010CB635111), Key Project of Space Foundation(CASC201106), the Doctorate Foundation of Northwestern Polytechnical University (CX201210), graduate starting seed fund of Northwestern Polytechnical University (Grant No. z2012158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Zhang, Q., Zhang, H. et al. Preparation of diamine-POSS/Ag hybrid microspheres and its application in epoxy resin. J Polym Res 19, 9986 (2012). https://doi.org/10.1007/s10965-012-9986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9986-2

Keywords

Navigation