Skip to main content
Log in

Crew cut, flower-like and mixed-shaggy micelles prepared from HLH and LHL triblocks as carriers: a comparative study of encapsulation, stability and release properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two model triblock copolymers composed of hydrophilic (H) polyethylene glycol (PEG) and lypophilic (L) poly(butylene adipate) (PBA) have been synthesized and characterized with quite same molecular weight of each segments and different segment order: PBA-PEG-PBA and mPEG-PBA-mPEG. While LHL micelles adopt a flower-like arrangement with looped PEG on the shell, HLH micelles form a crew-cut particle with stretched hydrated PEG on the shell. The comparative investigation of the pharmaceutical properties of the obtained crewcut and flower-like micellar nanoparticles displayed advantages and disadvantages over each other. In order to exploit the advantages of both systems, the mixing has been used as a strategy. The mixed micelles with “shaggy arrangement” have been produced from the comicelling of LHL and HLH triblocks. They revealed better drug loading, encapsulation efficiency, more controlled release rates, smaller particle sizes and size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CMC:

Critical micelle concentration

H:

Hydrophile

L:

Lipophile

PBA:

Poly (butylene adipate)

mPEG:

Monomethoxy polyethylene glycol

PME:

Polymer micellation efficiency

Rh :

Radius of Hydration

References

  1. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Contr Release 109:169–188

    Article  CAS  Google Scholar 

  2. Wu Y, Mingjun L, Hongxia G (2009) Polymeric micelle composed of PLA and chitosan as a drug carrier. J Polym Res 16:11–18

    Article  CAS  Google Scholar 

  3. Liu CC, Chang KY, Wang YJ (2010) A novel biodegradable amphiphilic diblock copolymers based on poly(lactic acid) and hyaluronic acid as biomaterials for drug delivery. J Polym Res 17:459–469

    Article  CAS  Google Scholar 

  4. Zhu M-Q, Xiang L, Yang K, Shen L-J, Long F, Fan J-B, Yi H-Q, Xiang J, Aldred MP (2012) Synthesis and characterization of biodegradable amphiphilic triblock copolymers methoxy-poly(ethylene glycol)-b-poly(L-lysine)-b-poly(L-lactic acid). J Polym Res 19:9808

    Article  Google Scholar 

  5. Allen C, Maysinger D, Eisenberg A (1999) Nano-engineering block copolymer aggregates for drug delivery. Colloid Surface B-Biointerfaces 16:3–27

    Article  CAS  Google Scholar 

  6. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  Google Scholar 

  7. Wang T, Jiang M, Wu Y (2010) Nanoparticles composed of PLGA and hyperbranched poly (amine-ester) as a drug carrier. J Polym Res 17:335–345

    Article  CAS  Google Scholar 

  8. Wang X-L, Zhai Y-L, Tang D-L, Liu G-Y, Wang Y-Z (2012) Self-assembly, drug-delivery behavior, and cytotoxicity evaluation of amphiphilic chitosan-graft-poly(1,4-dioxan-2-one) copolymers. J Polym Res 19:9946

    Article  Google Scholar 

  9. Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT et al (2011) Mixed micelles self-assembled from block copolymers for drug delivery. Curr Opin Colloid Interface Sci 16:182–194

    Article  CAS  Google Scholar 

  10. Kim S, Shi Y, Kim JY, Park K, Cheng J-X (2009) Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle—cell interaction. Expet Opin Drug Deliv 7:49–62

    Article  Google Scholar 

  11. Wiradharma N, Zhang Y, Venkataraman S, Hedrick JL, Yang YY (2009) Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 4:302–317

    Article  CAS  Google Scholar 

  12. Natalya R (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  Google Scholar 

  13. Gérard R (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170

    Article  Google Scholar 

  14. Nguyen A, Marsaud V, Bouclier C, Top S, Vessieres A, Pigeon P et al (2008) Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int J Pharm 347:128–135

    Article  CAS  Google Scholar 

  15. Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State & Materials Science 6:319–327

    Article  CAS  Google Scholar 

  16. Maiti S, Chatterji PR (2000) Transition from Normal to Flowerlike Micelles†. J Phys Chem B 104:10253–10257

    Article  CAS  Google Scholar 

  17. Jeong B, Bae YH, Kim SW (1999) Thermoreversible gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions. Macromolecules 32:7064–7069

    Article  CAS  Google Scholar 

  18. Li Z, Ning W, Wang J, Choi A, Lee P-Y, Tyagi P et al (2003) Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res 20:884–888

    Article  CAS  Google Scholar 

  19. He G, Ma LL, Pan J, Venkatraman S (2007) ABA and BAB type triblock copolymers of PEG and PLA: a comparative study of drug release properties and “stealth” particle characteristics. Int J Pharm 334:48–55

    Article  CAS  Google Scholar 

  20. Kasuya K-i, Takagi K-i, Ishiwatari S-i, Yoshida Y, Doi Y (1998) Biodegradabilities of various aliphatic polyesters in natural waters. Polym Degrad Stab 59:327–332

    Article  CAS  Google Scholar 

  21. Mu C-F, Balakrishnan P, Cui F-D, Yin Y-M, Lee Y-B, Choi H-G et al (2010) The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials 31:2371–2379

    Article  CAS  Google Scholar 

  22. Li L, Tan YB (2008) Preparation and properties of mixed micelles made of Pluronic polymer and PEG-PE. J Colloid Interface Sci 317:326–331

    Article  CAS  Google Scholar 

  23. Yoo SI, Sohn B-H, Zin W-C, Jung JC, Park C (2007) Mixtures of diblock copolymer micelles by different mixing protocols. Macromolecules 40:8323–8328

    Article  CAS  Google Scholar 

  24. Kim SH, Tan JPK, Nederberg F, Fukushima K, Yang YY, Waymouth RM et al (2008) Mixed micelle formation through stereocomplexation between enantiomeric Poly(lactide) block copolymers. Macromolecules 42:25–29

    Article  Google Scholar 

  25. Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73

    Article  CAS  Google Scholar 

  26. Yang L, Wu X, Liu F, Duan Y, Li S (2009) Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res 26:2332–2342

    Article  CAS  Google Scholar 

  27. Alakhov V, Klinski E, Li S, Pietrzynski G, Venne A, Batrakova E et al (1999) Block copolymer-based formulation of doxorubicin. From cell screen to clinical trials. Colloid Surface B Biointerfaces 16:113–134

    Article  CAS  Google Scholar 

  28. Xing N, Chen Y, Mitchell SH, Young CY (2001) Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 22:409–414

    Article  CAS  Google Scholar 

  29. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  Google Scholar 

  30. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4

    Article  CAS  Google Scholar 

  31. Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    Article  CAS  Google Scholar 

  32. Van Butsele K, Sibret P, Fustin CA, Gohy JF, Passirani C, Benoit JP et al (2009) Synthesis and pH-dependent micellization of diblock copolymer mixtures. J Colloid Interface Sci 329:235–243

    Article  Google Scholar 

  33. Vangeyte P, Leyh B, Auvray L, Grandjean J, Misselyn-Bauduin AM, Jérôme R (2004) Mixed self-assembly of poly(ethylene oxide)-b-poly(ε-caprolactone) copolymers and sodium dodecyl sulfate in aqueous solution. Langmuir 20:9019–9028

    Article  CAS  Google Scholar 

  34. Khoee S, Hassanzadeh S, Goliaie B (2007) Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles. Nanotechnology 18:175602

    Article  Google Scholar 

  35. Khoee S, Rahimi HB (2010) Intermolecular interaction and morphology investigation of drug loaded ABA-triblock copolymers with different hydrophilic/lipophilic ratios. Bioorg Med Chem 18:7283–7290

    Article  CAS  Google Scholar 

  36. Li Z, Hillmyer MA, Lodge TP (2005) Control of structure in multicompartment micelles by blending μ-ABC star terpolymers with AB diblock copolymers. Macromolecules 39:765–771

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Patrick Stals at Chemistry and Chemical Engineering Faculty, Technology University of Eindhoven for obtaining AFM micrographs. The authors also would like to thank Mr. Hashemi (Laboratory of Electron Microscopy of University College of Science, University of Tehran) for obtaining SEM micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Khoee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 346 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassanzadeh, S., Khoee, S., Mahdavi, M. et al. Crew cut, flower-like and mixed-shaggy micelles prepared from HLH and LHL triblocks as carriers: a comparative study of encapsulation, stability and release properties. J Polym Res 19, 9978 (2012). https://doi.org/10.1007/s10965-012-9978-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9978-2

Keywords

Navigation