Skip to main content
Log in

A novel acrylamide-anatase hybrid nanocomposite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel hybrid-nanocomposite of polyacrylamide-TiO2 (PAM/TiO2) with nano-anatase particles was synthesized in two steps. Firstly, the surface of nano-anatase particles was modified by 3-methacryloxy-propyl-trimethoxysilane (TMSM) as coupling agent by sol–gel method. Secondly, the surface modified nano-anatase particles were grafted onto the acrylamide monomer (AM) as an organic phase by free radical polymerization. The spectral (Fourier transform Infrared spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and titanium dioxide (anatase) into the hybrid structure. The results also showed that the degradation temperatures and residual content were obviously higher in nanocomposite than those of pure polyacrylamide (PAM). Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) studies proved that the nano-anatase particles have been uniformly encapsulated inside the nanocomposite sample containing 5wt% TiO2. However, the agglomeration of nano-particles in the nanocomposite with 20wt% of TiO2 was detected by atomic force microscopy (AFM) and dynamic mechanical thermal analysis (DMTA) studies. Thermo-mechanical properties of acrylamide homopolymer (PAM) and their nanocomposites were investigated by DMTA. The shifts in storage modulus and tanδ peaks were attributed to morphological changes in the nanocomposites with increasing the amount of inorganic nano-particles and their distribution in polymer matrix. Flocculation behavior of PAM and PAM/TiO2 in two different level of titanates (i.e. 5 and 20wt% TiO2) for 0.25wt% nano-clay suspension was evaluated using batch method. The adsorption results showed that PAM/TiO2 have ability for interaction with clay particles by means of adsorption through electrostatic interaction, Vander Waals forces and hydrogen bonding. However, it was found that the flocculation efficiency of the pure polymer (PAM) and the hybrid-nanocomposite (5wt% TiO2) is much better than that of its high concentration (20wt% TiO2) in the hybrid. This flocculation behavior can be attributed to uniform distribution of nano-particles and agglomeration possibility in the case of low and high concentration level of titanate in hybrid nanocomposite, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Noppakundilograt S, Nanakorn P, Sonjaipanich K, Seetapan N, Kiatkamjornwong S (2009) Synthesis and characterization of acrylamide-based aluminum flocculent for turbidity reduction in wastewater. J Appl Polym Sci 114:2564–2575. doi:10.1000/app.30817

    Article  CAS  Google Scholar 

  2. Wong SS, Teng TT, Ahmad AL, Zuhairi A, Najafpour G (2006) Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J Hazard Mater 135:378–388. doi:10.1016/jjhazmat.2005.11.076

    Article  CAS  Google Scholar 

  3. Sojka RE, Bjorneberg DL, Entry JA, Lentz RD, Orts WJ (2007) Polyacrylamide in agriculture and environmental land management. Adv Agron 92:75–162. doi:10.1016/S0065-2113(04)92002-0

    Article  CAS  Google Scholar 

  4. Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants—an Esuriently Approach. J Environ Polym Degr 14:195–202. doi:10.1007/S10924-006-001x

    Article  CAS  Google Scholar 

  5. Yang WY, Qian JW, Shen ZQ (2004) A novel flocculant of Al (OH) 3–polyacrylamide ionic hybrid. J Colloid Interface Sci 273:400–405. doi:10.1016/j.jcis.2004.02.002

    Article  CAS  Google Scholar 

  6. Bavykin DV, Friedrich JM, Walsh FC (2006) Protonated titanates and TiO2 nano-structured materials: synthesis, properties, and applications. Adv Mater 18:2807–2824. doi:10.1002/adma.200502696

    Article  CAS  Google Scholar 

  7. Gülşen G, Naci Inci M (2002) Thermal optical properties of TiO2 films. Opt Mater 18:373–381

    Article  Google Scholar 

  8. Bach H, Krause D (1997) Thin films on glass. Springer, Berlin

    Google Scholar 

  9. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima R, Kitamura A (1997) Light-induced amphiphilic surfaces. Nature 388:431–432. doi:10.1038/41233

    Article  CAS  Google Scholar 

  10. Luo Z, Cai H, Liu J, Hong WL, Tang S (2005) Preparation of TiO2 coating on the glass and hydrophilicity under sunlight irradiation. Key Eng Mater 280–283:827–830. doi:10.4028/www.scientificnet/kem.280-283.827

    Article  Google Scholar 

  11. Tianbin W, Ke Y (2006) Preparation of silica–PS composite particles and their application in PET. Eur Polym J 42:274–285. doi:10.1016/jeurpolymj.2005.08.002

    Article  Google Scholar 

  12. Siwińska-Stefańska K, Krysztafkiewicz A, Jesionowski T (2007) Modification of hydrophilic/hydrophobic character of TiO2 surface using selected silane coupling agents. Physicochem Probl Miner Process 41:205–214

    Google Scholar 

  13. An F, Feng X, Gao B (2009) Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO2. Chem Eng J 151:183–187. doi:10.10.16/j.cej.2009.011

    Article  CAS  Google Scholar 

  14. Jang J, Park H (2002) Formation and structure of polyacrylamide–silica nanocomposites by sol–gel process. J Appl Polym Sci 83:1817–1823. doi:10.1002/app.10116

    Article  CAS  Google Scholar 

  15. Swerin A, Odberg L, Wagberg L (1996) An extended model for the estimation of flocculation efficiency factors in multicomponent flocculant systems. Colloids Surf, A Physicochem Eng Asp 113:25–38. doi:10.1016/0927-7757(95)03506-0

    Article  CAS  Google Scholar 

  16. Yan ZG, Deng YL (2000) Bäcklund transformation, non-local symmetry and exact solutions for (2 + 1)-dimensional variable coefficient generalized KP equations. Chem Eng J 80:31–35

    Article  CAS  Google Scholar 

  17. Ovenden C, Xiao HN (2002) Flocculation behavior and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surf, A Physicochem Eng Asp 197:225–234. doi:10.1016/S0927-7757(01)00903-7

    Article  CAS  Google Scholar 

  18. Feng W, Zhang TR, Wei L (2002) Photochromic behavior and mechanism of thin films in H3PW12O40/polyacrylamide system. Mat Lett 54:309–313. doi:10.1016/S0167-577X901)00583-3

    Article  CAS  Google Scholar 

  19. Matsuura Y, Matsukawa K, Kawabata R, Higashi N, Niwa M, Inoue H (2002) Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer 43:1549–1553. doi:10.1016/S0032-386(01)00693-3

    Article  CAS  Google Scholar 

  20. Yang WY, Qian JW, Shen ZQ (2004) A novel flocculant of Al (OH) 3-polyacrylamide ionic hybrid. J Colloid Interface Sci 273:400–405. doi:10.1016/J.JCIS.2004.02.002

    Article  CAS  Google Scholar 

  21. Deng C, James PF, Wright PV (1998) Poly (tetraethylene glycol malonate)–titanium oxide hybrid materials by sol–gel methods. J Mater Chem 8:153. doi:10.1039/A703624H

    Article  CAS  Google Scholar 

  22. Park HK, Kim DK, Hee C (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743. doi:10.1111/j.1151-2916.1997.tb02891.x

    Article  CAS  Google Scholar 

  23. Katritzky AR, Lagowski JM, Beard JAT (1960) The Infrared spectra of esters. 2. Acetates, propionates, n-Butyrates, beta-aryl propionates, acrylates, methacrylates, crotonates, beta-aryl acrylates, formates, chloroformates, and carbonates. Spectrochim Acta 60:964–980

    Article  Google Scholar 

  24. Chen R, Boerio FJ (1990) Infrared and X-ray photoelectron spectroscopy of aminophenyltrimethoxysilane films on metals. J Adhes Sci Technol 4(6):453–463. doi:10.1163/156856190X00423

    Article  CAS  Google Scholar 

  25. Kang JS, Yu CL, Zhang FA (2009) Effect of silane modified SiO particles on poly (MMA-HEMA) soap-free emulsion polymerization. Iran Polym J 18:927–935. doi:10.1002/app.10116

    CAS  Google Scholar 

  26. Matinlinna JP, Ozcan M, Lassila LVJ, Vallittu PK (2004) The effect of a 3-methacryloxypropyltrimethoxysilane and vinyltriisopropoxysilane blend and tris (3- trimethoxysilylpropyl) isocyanurate on the shear bond strength of composite resin to titanium metal. Dent Mater 20:804–813. doi:10.1016/j.dental.2003.10.009

    Article  CAS  Google Scholar 

  27. Mansoori Y, Atghia SV, Zamanloo MR, Imanzadeh G, Sirousazar M (2010) Polymer–clay nanocomposites: free-radical grafting of polyacrylamide onto organophilic montmorillonite. Eur Polym J 46:1844–1853. doi:10.1016/j.eurpolymj.2010.07.006

    Article  CAS  Google Scholar 

  28. Gilman JW, Jackson CL, Morgan AB, Harris RJR, Manias E, Giannelis EP (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873. doi:10.1021/cm0001760

    Article  CAS  Google Scholar 

  29. Yeh JM, Liou SJ, Chang YW (2004) Polyacrylamide–clay nanocomposite materials prepared by photopolymerization with acrylamide as an intercalating agent. J Appl Polym Sci 91:3489–3496. doi:10.1002/app.13555

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rabiee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ershad-Langroudi, A., Rabiee, A. A novel acrylamide-anatase hybrid nanocomposite. J Polym Res 19, 9970 (2012). https://doi.org/10.1007/s10965-012-9970-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9970-x

Keywords

Navigation