Skip to main content
Log in

Preparation and evaluation of microstructure, dielectric and conductivity (ac/dc) characteristics of a polyaniline/poly N-vinyl carbazole/Fe3O4 nanocomposite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A poly N-vinyl carbazole- Fe3O4 hybrid composite was prepared by solid state polymerization of N-vinyl carbazole (NVC) monomer in presence of Fe3O4 powder. This hybrid composite was dispersed in aqueous medium containing a known amount of potassium perdisulfate (KPS) as oxidant under constant sonication. A known amount of aniline (ANI) was injected in the system which started changing color and ultimately a black mass of (PANI-PNVC-Fe3O4) separated out. The composite was characterized by FTIR, FESEM and HRTEM analyses. XRD analyses using Williamson-Hall plot revealed average particle size of the PANI-PNVC-Fe3O4 composite to be around 34 nm. HRTEM analyses confirmed the particle size to be in the range 25–40 nm. The dielectric constants of PNVC–Fe3O4 system was low at 0.1–25 kHz whereas the PANI encapsulated PNVC–Fe3O4 nanocomposites showed significantly higher values of dielectric constant (>5500) at 0.1 kHz implying that the interfaces between grain and grain boundary of the composite play a dominant role for enhancing dielectric properties of the system. The ac conductivity was found to be independent of frequency in the range 102–103 Hz for all the nanocomposites implying contribution of free charges and rise thereafter appreciably in the frequency range of 1–25 kHz due to trapped charges in the grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maity A, Biswas M (2006) J Ind Eng Chem 12:311–319

    CAS  Google Scholar 

  2. Biswas M, Ray SS (2001) Adv Polym Sci 155:167–221

    Article  CAS  Google Scholar 

  3. Ray SS, Biswas M (1999) Synth Met 105:99–105

    Article  Google Scholar 

  4. Ray SS, Biswas M (2000) Synth Met 108:231–236

    Article  CAS  Google Scholar 

  5. Kim JM, Liu F, Choi HJ, Hong SH, Joo J (2003) Polymer 44:289–293

    Article  CAS  Google Scholar 

  6. Kim BH, Jung JH, Joo J, Epstein AJ, Mizoguchi K, Kim JW, Choi HJ (2002) Macromolecules 35:1419–1423

    Article  CAS  Google Scholar 

  7. Densakulprasert N, Wannatong L, Chotpattananout D, Hiamtup P, Sirivat A (2005) Mater Sci Eng B117:276–282

    Article  CAS  Google Scholar 

  8. Park SJ, Park SY, Cho MS, Choi HJ, Jhon MS (2005) Synth Met 152:337–340

    Article  CAS  Google Scholar 

  9. Sainz R, Benito AM, Martinez MT, Galindo JF, Stores J, Baro AM, Corraze B, Chauvet O, Dalton AB, Baughnan RH, Maser WK (2005) Nanotechnol 16:S150–S154

    Article  CAS  Google Scholar 

  10. Maity A, Biswas M (2004) Polym J 36:812–816

    Article  CAS  Google Scholar 

  11. Rao Y, Ogitani S, Kohl P, Wong CP (2002) J Appl Polym Sci 83:1084–1090

    Article  CAS  Google Scholar 

  12. Tchmutin IA, Ponomarenko AT, Kozub GI, Efimov ON (2003) Carbon 41:1391–1395

    Article  CAS  Google Scholar 

  13. Ravikiran YT, Lagare MT, Sairamb M, Mallikarjuna NN, Sreedhar B, Manohar S, MacDiarmid AG, Aminabhavi TM (2006) Synth Met 156:1139–1147

    Article  CAS  Google Scholar 

  14. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P, Karki AB, Young DP, Guo Z (2010) J Phys Chem C 114:16335–16342

    Article  CAS  Google Scholar 

  15. Mavinakuli P, Wei S, Wang Q, Karki AB, Dhage S, Wang Z, Young DP, Guo Z (2010) J Phys Chem C 114:3874–3882

    Article  CAS  Google Scholar 

  16. Pearson JM (1990) In: Kroschwitz JI (ed) Concise encyclopedia of polymer science and engineering. Wiley Interscience, New York, pp 1241–1244

    Google Scholar 

  17. Ghosh D, Biswas M (2009) J Polym Res 16:245–254

    Article  CAS  Google Scholar 

  18. Ghosh D, Saha Sardar P, Biswas M, Mondal A, Mukherjee N (2010) Mater Chem Phys 123:9–12

    Article  CAS  Google Scholar 

  19. Haldar I, Biswas M, Nayak A (2011) Synth Met 161:1400–1407

    Article  CAS  Google Scholar 

  20. Gupta RK, Singh RA (2004) Mater Chem Phys 86:279–283

    Article  CAS  Google Scholar 

  21. Tabellout M, Fatyeyeva K, Baillif PY, Bardeau JF, Pud AA (2005) J Non-Cryst Solids 351:2835–2841

    Article  CAS  Google Scholar 

  22. Lu J, Moon KS, Kim BK, Wong CP (2007) Polymer 48:1510–1516

    Article  CAS  Google Scholar 

  23. Ho C, Liu C, Hsieh C, Lee S (2008) Synth Met 158:630–637

    Article  CAS  Google Scholar 

  24. Haldar I, Kundu A, Biswas M, Nayak A (2011) Mater Chem Phys 128:256–264

    Article  CAS  Google Scholar 

  25. Tsuji K, Takakura K, Nishii M, Hayashi K, Okamura S (1966) J Polym Sci Part A-1(4):2028–2039

    Google Scholar 

  26. Pac J, Plesch PH (1967) Polymer 8:237–262

    Article  CAS  Google Scholar 

  27. Gospodinova N, Mokreva P, Terlemezyan L (1995) Polymer 36:3585–3587

    Article  CAS  Google Scholar 

  28. Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF (1991) Polymer 32:2325–2330

    Article  CAS  Google Scholar 

  29. Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T (2010) Langmuir 26:6230–6239

    Article  CAS  Google Scholar 

  30. Maeda S, Armes SP (1995) Chem Mater 7:171–178

    Article  CAS  Google Scholar 

  31. Yassar A, Roncali J, Garnier F (1987) Polym Commun 28:103–104

    CAS  Google Scholar 

  32. Yoshino K, Yin XH, Morita S, Nakanishi Y, Nakagawa S, Yamamoto H, Watanuki T, Isa I (1993) Jpn J Appl Phys 32:979–981

    Article  CAS  Google Scholar 

  33. Ballav N, Maity A, Biswas M (2004) Mater Chem Phys 87:120–126

    Article  CAS  Google Scholar 

  34. Chen Y, Wang ZE, Cai RF (1996) J Polym Sci, Part B: Polym Phys 34:631–640

    Article  CAS  Google Scholar 

  35. Patil DS, Shaikh JS, Dalavi DS, Kalagi SS, Patil PS (2011) Mater Chem Phys 128:449–455

    Article  CAS  Google Scholar 

  36. Williamson GK, Hall WH (1953) Acta Metall 1:22–29

    Article  CAS  Google Scholar 

  37. Cao G, Feng L, Wang C (2007) J Phys D: Appl Phys 40:2899–2905

    Article  CAS  Google Scholar 

  38. Rout SK, Hussian A, Lee JS, Kim IW, Woo SI (2009) J Alloys Compd 477:510–711

    Article  Google Scholar 

  39. Dutta P, Biswas S, Ghosh M, De SK, Chettarjee A (2001) Synth Met 122:455–461

    Article  CAS  Google Scholar 

  40. De Oliveira HP, dos Santos MVB, dos Santos CG, de Melo CP (2003) Mater Charact 50:223–226

    Article  Google Scholar 

  41. Ruangchuay L, Sirivat A, Schwand J (2003) Talanta 60:25–31

    Article  CAS  Google Scholar 

  42. Harun MH, Saion E, Kassim A, Hussain MY, Mustafa IS, Omer AA (2008) Malaysian Polym J 3:24–31

    Google Scholar 

Download references

Acknowledgements

MB and AN gratefully acknowledge the financial grant from CSIR, New Delhi, India in the form of a project (No. 01(2342)/09/EMR-II). IH thanks CSIR for a junior research fellowship. Thanks are also due to Mr. Pulak Roy of Saha Institute of Nuclear Physics, Kolkata for TEM measurements and to the authorities of Presidency University, Kolkata, India for facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukul Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haldar, I., Biswas, M. & Nayak, A. Preparation and evaluation of microstructure, dielectric and conductivity (ac/dc) characteristics of a polyaniline/poly N-vinyl carbazole/Fe3O4 nanocomposite. J Polym Res 19, 9951 (2012). https://doi.org/10.1007/s10965-012-9951-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9951-0

Keywords

Navigation