Skip to main content
Log in

Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The 17ß-estradiol-imprinted polymers using non-covalent approach with methacrylic acid as the functional monomer was prepared and characterized. The effect of porogenic solvents on the adsorption capacity and thermal stability of the molecularly imprinted polymers (MIPs) were examined. Scanning electron microscopic images showed that the synthesized MIPs were bulk porous materials. The surface areas of MIPs increased from 151–188 to 239–292 m2 g-1 when templates were removed by methanol using Soxhlet extraction. In addition, the MIPs prepared in chloroform had a higher adsorption capacity towards 17ß-estradiol (1,212 μg g-1) than that in acetonitrile (769 μg g-1), indicating that less polar porogenic solvent is suitable for synthesis of non-covalent MIPs. FTIR showed that the carbonyl group is the major functional group in MIPs to form monomer-template complex via H-bond. In addition, only a slight decrease (< 5 %) in adsorption capacity of the MIPs was observed when incubated at 80 °C for 5 h. Analysis of the capacity factor values (κimp’) for MIPs indicated that the rebinding ability from selective recognition sites of MIPs decreased in the order 17ß-estradiol > testosterone > benzo[a]pyrene > progesterone > phenol, and the κimp’ values decreased from 2.68 to 0.63, indicating the excellent selectivity of MIPs among closely related compounds. Results obtained in this study clearly indicate that the imprinted polymer is specific for recognizing 17ß-estradiol. The excellent selectivity and high adsorption capacity of 17ß-estradiol-imprinted polymers open the door to develop MIPs for effective separation and adsorption of estrogenic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  2. Robinson I, Junqua G, Van Coillie R, Thomas O (2007) Anal Bioanal Chem 387:1143–1151

    Article  CAS  Google Scholar 

  3. Snyder SA (2008) Ozone Sci Eng 30:65–69

    Article  CAS  Google Scholar 

  4. Cajthaml T, Kresinova Z, Svobodova K, Moeder M (2009) Chemosphere 75:745–750

    Article  CAS  Google Scholar 

  5. Kuch HM, Ballschmiter K (2001) Environ Sci Technol 35:3201–3206

    Article  CAS  Google Scholar 

  6. Van der Linden SC, Heringa MB, Man HY, Sonneveld E, Puijker LM, Brouwer A, Van der Burg B (2008) Environ Sci Technol 42:5814–5820

    Article  Google Scholar 

  7. Beck IC, Bruhn GJ, Ruck W (2005) J Chromatogr A 1090:98–106

    Article  CAS  Google Scholar 

  8. Loos R, Hanke G, Umlauf G, Eisenreich SJ (2007) Chemosphere 66:690–699

    Article  CAS  Google Scholar 

  9. Khorrami AR, Edrisi M (2010) Sep Sci Technol 45:404–412

    Article  CAS  Google Scholar 

  10. Amut E, Fu Q, Fang Q, Liu R, Xiao AP, Zeng AG, Chang C (2010) J Polym Res 17:401–409

    Article  CAS  Google Scholar 

  11. Lee SC, Chuang FL, Tsai YL, Chen H (2010) J Polym Res 17:737–744

    Article  CAS  Google Scholar 

  12. Bravo JC, Garcinuño RM, Fernández GP, Durand JS (2007) Ana Bioanal Chem 388:1039–1045

    Article  CAS  Google Scholar 

  13. Al-Degs YS, Abu-Surrah AS, Ibrahim KA (2009) Anal Bioanal Chem 393:1055–1062

    Article  CAS  Google Scholar 

  14. Alexiadou DK, Maragou NC, Thomaidis NS, Theodoridis GA, Koupparis MA (2008) J Sep Sci 31:2272–2282

    Article  CAS  Google Scholar 

  15. Alvarez-Lorenzo C, Concheiro A (2004) J Chromatogr B 804:231–245

    Article  CAS  Google Scholar 

  16. Greene N, Shimizu K (2005) J Am Chem Soc 127:5695–5700

    Article  CAS  Google Scholar 

  17. Lakshmi D, Bossi A, Whitcombe MJ, Chianella I, Fowler SA, Subrahmanyam S, Piletska EV, Piletsky SA (2009) Anal Chem 81:3576–3584

    Article  CAS  Google Scholar 

  18. Farber S, Green BS, Domb AJ (2009) J Polym Sci A 47:5534–5542

    Article  CAS  Google Scholar 

  19. Piletsky SA, Piletska EV, Karim K, Freebairn K, Legge C, Turner A (2002) Macromolecules 35:7499–7504

    Article  CAS  Google Scholar 

  20. Piletska EV, Guerreiro AR, Whitcombe MJ, Piletsky SA (2009) Macromolecules 42:4921–4928

    Article  CAS  Google Scholar 

  21. Longo L, Scorrano S, Vasapollo G (2010) J Polym Res 17:683–687

    Article  CAS  Google Scholar 

  22. Szumski M, Buszewski B (2004) J Sep Sci 27:837–842

    Article  CAS  Google Scholar 

  23. Zhang ZB, Hu JY (2008) Water Res 42:4101–4108

    Article  Google Scholar 

  24. Spivak DA (2005) Adv Drug Delivery Rev 57:1779–1794

    Article  CAS  Google Scholar 

  25. Watabe Y, Kubo T, Nisjikawa T, Fujita T, Kaya K, Hosoya K (2006) J Chromatogr A 1120:252–259

    Article  CAS  Google Scholar 

  26. Meng Z, Chen W, Mulchandani A (2005) Environ Sci Technol 39:8958–8962

    Article  CAS  Google Scholar 

  27. Fernández-Álvarez P, Le Noir M, Guieysse B (2009) J Hazard Mater 163:1107–1112

    Article  Google Scholar 

  28. Zhang ZB, Hu JY (2010) Water Air Soil Pollut 210:255–264

    Article  CAS  Google Scholar 

  29. Lai EPC, De Maleki Z, Wu SY (2010) J Appl Polym Sci 116:1499–1508

    CAS  Google Scholar 

  30. Dong H, Tong A, Li L (2003) Spectrochim Acta A 59:279–284

    Article  Google Scholar 

  31. Cheong S, McNiven S, Rachkov K, Levi R, Yano K, Karube I (1997) Macromolecules 30:1317–1322

    Article  CAS  Google Scholar 

  32. Jiang XM, Zhao CD, Jiang N, Zhang HX, Liu MC (2008) Food Chem 108:1061–1067

    Article  CAS  Google Scholar 

  33. Le Noir M, Lepeuple AS, Guieysse B, Mattiasson B (2007) Water Res 41:2825–2831

    Article  Google Scholar 

  34. Haupt K, Mosbach K (2000) Chem Rev 100:2495–2504

    Article  CAS  Google Scholar 

  35. Mahony JO, Nolan K, Smyth MR, Mizakoff B (2005) Anal Chim Acta 534:31–39

    Article  CAS  Google Scholar 

  36. Cormack PAG, Elorza AZ (2004) J Chromatogr B 804:173–182

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank National Science Council, Taiwan for financial support under grant No NSC 96-2113-M-007-027-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruey-an Doong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Sh., Doong, Ra. Adsorption and selective recognition of 17ß-estradiol by molecularly imprinted polymers. J Polym Res 19, 9939 (2012). https://doi.org/10.1007/s10965-012-9939-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9939-9

Keywords

Navigation