Skip to main content

Advertisement

Log in

Preparation and morphology distinguishing of novel ZnO ultrafine particle filled nanocomposites contain new poly(amide-imide) via ultrasonic process

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, for the first time, a new nanostructure poly(amide-imide) (PAI) was synthesized from the polymerization reaction of 4,4΄-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) as a novel diacid with 4,4΄-methylenebis(3-chloro-2,6-diethylaniline) using tetra-n-butylammonium bromide and triphenyl phosphite as a condensing agent and green media. This methodology offers enhancements for the synthesis of polymer with regard to yield of products, simplicity in operation, and green aspects by avoiding volatile solvents. The obtained polymer was used to prepare PAI/ZnO nanocomposites using nano-ZnO surface-coupled by 3-aminopropyltriethoxylsilane as a coupling agent through ultrasonic cavitations process. The formation of PAI was confirmed by 1H-NMR, fourier transform IR spectroscopy (FT-IR), and elemental analysis. The obtained polymer was synthesized with good yield (90 %) and moderate inherent viscosity (0.48 dL/g). The resulting nanoparticle filled composites were also characterized by FT-IR, powder X-ray diffraction, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The TEM and FE-SEM results indicated a high dispersion level of the nanoscale inorganic particles in the polymer matrix. Results from the TGA thermographs indicate that the incorporation of KH550-functionalized ZnO nanoparticles into PAI matrix can impart significant improvements on the heat stability of the prepared nanoparticle-reinforced composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paul RD, Robeson LM (2008) Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  2. Lin JC, Chang LC, Nien MH, Ho HL (2006) Compos Struct 74:30–36

    Article  Google Scholar 

  3. Dagani R (1999) Chem Eng News 77(23):25–37

    Article  Google Scholar 

  4. Mallakpour S, Barati A (2012) J Polym Res 19:9802–9809

    Article  Google Scholar 

  5. Chiu CW, Lin CA, Hong PD (2011) J Polym Res 18:367–372

    Article  CAS  Google Scholar 

  6. Wang ZL (2004) Mater Today 7:26–33

    Article  CAS  Google Scholar 

  7. Kumar RTR, McGlynn E, McLoughlin C, Chakrabarti S, Smith RC, Carey JD et al (2007) Nanotechnology 18:215704–9

    Article  Google Scholar 

  8. Schmidt-Mende L, MacManus-Driscoll JL (2007) Mater Today 10(5):40–48

    Article  CAS  Google Scholar 

  9. Wu J, Xie CS, Bai ZK, Zhu BL, Huang KJWuR (2002) Mater Sci Eng B 95:157–161

    Article  Google Scholar 

  10. Turton R, Berry DA, Gardner TH, Miltz A (2004) Ind Eng Chem Res 43:1235–43

    Article  CAS  Google Scholar 

  11. Kamat PV, Huehn R, Nicolaescu R (2002) J Phys Chem B 106:788–94

    Article  CAS  Google Scholar 

  12. Hamminga GM, Mul G, Moulijn JA (2004) Chem Eng Sci 59:5479–85

    Article  CAS  Google Scholar 

  13. Wu R, Xie CS (2004) Mater Res Bull 39:637–45

    Article  CAS  Google Scholar 

  14. Shi J, Wang Y, Gao Y, Bai H (2008) Compos Sci Technol 68:1338–1347

    Article  CAS  Google Scholar 

  15. Tang E, Cheng G, Pang X, Ma X, Xing F (2006) Colloid Polym Sci 284:422–428

    Article  CAS  Google Scholar 

  16. Hong RY, Li JH, Chen LL, Liu DQ, Li HZ, Zheng Y, Ding J (2009) Powder Technol 189:426–432

    Article  CAS  Google Scholar 

  17. Li SC, Li YN (2010) J Appl Polym Chem 116:2965–2969

    Article  CAS  Google Scholar 

  18. Mallakpour S, Dinari M (2011) Polymer 52:2514–2523

    Article  CAS  Google Scholar 

  19. Liaw D, Liaw B (2001) Polymer 42:839–845

    Article  CAS  Google Scholar 

  20. Babooram K, Francis B, Bissessur R, Narain R (2008) Compos Sci Technol 8:617–624

    Article  Google Scholar 

  21. Liaw D, Chen W (2006) Polym Degrad Stabil 91:1731–1739

    Article  CAS  Google Scholar 

  22. Hsiao SH, Yang CP, Chen CW, Liou GS (2005) J Polym Res 38:627–634

    Google Scholar 

  23. Yamazaki N, Matsumoto M, Higashi F (1975) J Polym Sci Polym Chem 13:1373–1380

    CAS  Google Scholar 

  24. Hsiao SH, Yang CP (1990) J Polym Sci: Part A: Polym Chem 28:1149–1159

    Article  CAS  Google Scholar 

  25. Hsiao SH, Yang CP (1990) J Polym Sci: Part A: Polym Chem 28:2169–2178

    Article  CAS  Google Scholar 

  26. Rogers RD, Seddon KR (2003) Ionic liquids as green solvents: progress and prospects, ACS symposium series 856. American Chemical Society, Washington, DC

    Book  Google Scholar 

  27. Mallakpour S, Rafiee Z (2011) J Polym Environ 19:447–484

    Article  CAS  Google Scholar 

  28. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, second, completely revised and enlarged edition. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  29. Gu Y, Li G (2009) Adv Synth Catal 351:817–847

    Article  CAS  Google Scholar 

  30. Ding S, Radosz M, Shen Y (2005) Macromolecules 38:5921–5928

    Article  CAS  Google Scholar 

  31. Mallakpour S, Rafiee Z (2011) Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  32. Durand J, Teuma E, Gomez M (2007) C R Chimie 10:152–177

    Article  CAS  Google Scholar 

  33. Guerrero-Sanchez C, Hoogenboom R, Schubert US (2006) Chem Commun 3797–3799

  34. Guerrero-Sanchez C, Lobert M, Hoogenboom R, Schubert US (2007) Macromol Rapid Commun 28:456–464

    Article  CAS  Google Scholar 

  35. Li J, Zhang J, Liu Z, Soto A (2008) J Polym Sci: Part A: Polym Chem 44:4420–4427

    Article  Google Scholar 

  36. Vijayaraghavan R, Surianarayanan M, MacFarlane DR (2008) Angew Chem 116:5477–5480

    Article  Google Scholar 

  37. Mallakpour S, Rafiee Z (2011) J Polym Environ 19(2):485–517

    Article  CAS  Google Scholar 

  38. Tang EJ, Cheng GX, Ma XL, Pang XS, Zhao Q (2006) Appl Surf Sci 252:5227–5232

    Article  CAS  Google Scholar 

  39. Wu XL, Tok AIY, Boey FYC, Zeng XT, Zhang XH (2007) Appl Surf Sci 253:5473–5479

    Article  CAS  Google Scholar 

  40. Gu F, Wang SF, Lu MK, Zhou GJ, Xu G, Yuan DR (2004) Langmuir 20:3528–31

    Article  CAS  Google Scholar 

  41. Iwasaki T, Satoh M, Masuda T, Fujita T (2000) J Mater Sci 35:4025–4029

    Article  CAS  Google Scholar 

  42. Li YQ, Fu SY, Mai YW (2006) Polymer 47:2127–2132

    Article  CAS  Google Scholar 

  43. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  44. Pannasri P, Siriphannon P, Monvisade P, Monvisade P, Nookaew J (2011) J Polym Res 18:2245–2254

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from Iran nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellence in Sensors and Green Chemistry Research (IUT) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Zeraatpisheh, F. Preparation and morphology distinguishing of novel ZnO ultrafine particle filled nanocomposites contain new poly(amide-imide) via ultrasonic process. J Polym Res 19, 9927 (2012). https://doi.org/10.1007/s10965-012-9927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9927-0

Keywords

Navigation