Skip to main content
Log in

Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization kinetics of neat PA6 and binary blends of PA6/SEBS-g-MA were investigated by means of differential scanning calorimetry at four different coolings rates. Three macro kinetic models, viz. Avrami, Jeziorny and Tobin, were used to describe the non-isothermal crystallization kinetics. Primary and secondary crystallization were analyzed by Avrami equation. The results obtained by Avrami equation suggested that under non-isothermal condition, the mechanism of primary crystallization is more complex, while secondary crystallization showed one to three dimensional crystal growths. Tobin model described the overall crystallization kinetics and results were almost similar to those of Avrami model. The results obtained by Dobreva and Gutzowa method suggested that SEBS-g-MA did not act as a nucleating agent for PA6. Three isokinetic models (Augis-Bennet, Kissinger and Takhore) have been used for the evaluation of the activation energy of non-isothermal crystallization kinetics process. The value of activation energy ∆E slightly increases in the presence of 5, 10, 20 phr content of SEBS-g-MA and then decreases with at 35 and 50 phr contents of SEBS-g-MA. These results showed that up to 20 phr SEBS-g-MA hinder the mobility of PA6 chain segments and at 35 and 50 phr SEBS-g-MA eases the mobility of PA6 chain segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Asadinezhad SH, Jaferi SH, Khonakdar, Bohme F, Hassler R, Haussler L (2007) J Appl Polym Sci 106:1964–1971

    Article  CAS  Google Scholar 

  2. Wang GHL, Wei (2008) J Appl Polym Sci 107:3013–3030

    Article  CAS  Google Scholar 

  3. Huang JW, Chang CC, Kang CC, Yeh MY (2008) Thermochim Acta 468:66–74

    Article  CAS  Google Scholar 

  4. Meng H, Sui GX, Xie GY, Yang R (2009) Compos Sci Technol 69:606–611

    Article  CAS  Google Scholar 

  5. Jain S, Goossens H, Duin MV, Lemstra P (2005) Polymer 46:8805–8818

    Article  CAS  Google Scholar 

  6. Buzarovska A, Bogoeva-Gaceva G, Grozdanov A, Avella M, Gentile G, Errico M (2007) J Mater Sci 42(16):6501–6509

    Article  CAS  Google Scholar 

  7. Pacurariu C, Lazau RI, Lazau I, Tita D (2007) J Therm Anal Calorim 88:647–652

    Article  CAS  Google Scholar 

  8. Mileva D, Radusch HJ (2007) Betchev C 2007:319–328

    Google Scholar 

  9. Li G, Mu X, Fan S, Ren X (2009) J Macro Sci Part B Physics 48:684–695

    Article  CAS  Google Scholar 

  10. Wu SH, Wang FY, Ma CCM, Chang WC, Kuo CT, Kuan HC, Chen WJ (2001) J Material Letters 49:327–333

    Article  CAS  Google Scholar 

  11. Wu TM, Wu JY (2002) J Macro Sci Physics B 41:17–31

    Article  Google Scholar 

  12. Araujo EM, Hage E, Carvalho AJF (2004) J Mater Sci 39:1173–1178

    Article  CAS  Google Scholar 

  13. Burgisi G, Paternoster M, Peduto N, Saraceno A (1997) J Appl Polym Sci 66:777–787

    Article  CAS  Google Scholar 

  14. Collyer AA (1994) In Handbook of rubber toughened engineering plastics. Chapman & Hall, London, chapter 7

    Book  Google Scholar 

  15. Paul DR, Newman S (eds) (1978) Polymer blends. Academic, New York

    Google Scholar 

  16. Chiou KC, Wu SC, Wu HD, Chang FC (1999) J Appl Polym Sci 74:23–32

    Article  CAS  Google Scholar 

  17. Ding XJ, Xu RW, Yu DS, Chen H, Fan R (2003) J Appl Polym Sci 90:3503–3511

    Article  CAS  Google Scholar 

  18. Lin Y, Zhong W, Shen L, Xu P, Du Q (2005) J Macro Sci Part B Physics 44:161–175

    Article  Google Scholar 

  19. Chiu FC, Lai SM, Li HC, Chen CC (2010) J Polym Res 18:627–635

    Article  Google Scholar 

  20. Martuscelli E, Riva F, Sellitti C, Silvestre C (1985) Polymer 26:270–282

    Article  CAS  Google Scholar 

  21. Balamurugan GP, Maiti SN (2007) J Appl Polym Sci 107:2414–2435

    Article  Google Scholar 

  22. Hay JN, Sabir M (1969) Polymer 10:203–211

    Article  CAS  Google Scholar 

  23. Hay JN, Fitzgerald PA, Wiles M (1976) Polymer 17:1015–1018

    Article  CAS  Google Scholar 

  24. Hay JN (1979) Br Polymer 11:137

    Article  CAS  Google Scholar 

  25. Sui V, Meng H, Xie G, Yang R (2009) J Mater Sci Tech 25:145–150

    Google Scholar 

  26. Zhang F, Zhuo L, Xiong Y, Xu W (2008) J Polym Sci Part B Polymer Physics 46:2201–2211

    Article  CAS  Google Scholar 

  27. Kim SH, Ahn SH, Hirai T (2003) Polymer 44:5625–5634

    Article  CAS  Google Scholar 

  28. Liu M, Zhao Q, Wang Y, Zhang C, Shaokui (2003) Polymer 44:2537–2545

    Article  CAS  Google Scholar 

  29. Bishara A, Shaban HI (2006) J Appl Polym Sci 101:3565–3571

    Article  CAS  Google Scholar 

  30. Kusmono ZA, Ishak M, Chow WS, Takeichi T, Rochmadi (2008) Eur Polym J 44:1023–1039

    Article  CAS  Google Scholar 

  31. Socrates G (2000) In Handbook of Infrared and Raman characteristics group frequencies tables and charts. Wiley, New York, p 130

    Google Scholar 

  32. Sanxiong H, WU W, Wang R, PU W, Chen Y (2011) J Polym-Plast Technol and Eng 50:719–726

    Article  Google Scholar 

  33. Roberts MF, Jenekhe SA (1991) J Macromolecules 24:3142–3146

    Article  CAS  Google Scholar 

  34. Avrami MJ (1939) J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  35. Supaphol P, Dangseeyein N, Srimoan D, Nithitanakul M (2003) Thermochim Acta 406:207–220

    Article  CAS  Google Scholar 

  36. Apiwanthanakorn N, Supaphol P, Nithitanakul M (2004) Polym Test 23:817–826

    Article  CAS  Google Scholar 

  37. Supaphol P (2007) J Appl Polym Sci 78:388

    Google Scholar 

  38. Avrami MJ (1940) J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  39. Avrami MJ (1940) J Chem Phys 9:177–184

    Article  Google Scholar 

  40. Zhang J, Jin JJ, Chen (2010) Express Polym Letters 3:141–152

    Google Scholar 

  41. Weng W, Chen G, Wu D (2003) Polymer 44:8119–8132

    Article  CAS  Google Scholar 

  42. Liu T, Mo Z, Wang S, Zhang H (1997) J Polym Eng and Sci 37:568–575

    Article  CAS  Google Scholar 

  43. Sperling LH (1992) In handbook of introduction to physical polymer science, 2nd. Wiley, New York, pp 234–238

    Google Scholar 

  44. Christian JW (1975) The theory of transformations in metals and alloys, 2nd Edition, Pergamon, Oxford, pp 528–542

  45. Jeziorny A (1978) Polymer 19:1142–1144

    Article  CAS  Google Scholar 

  46. Tobin MC (1974) J Polym Sci Polym Phys 12:399–406

    CAS  Google Scholar 

  47. Tobin MC (1976) J Polym Sci Polym Phys 14:2253–2257

    CAS  Google Scholar 

  48. Tobin MC (1977) J Polym Sci Polym Phys 15:2269–2270

    CAS  Google Scholar 

  49. Dobreva A, Gutzowa I (1993) J Non Cryst Solids 162:1–12

    Article  CAS  Google Scholar 

  50. Dobreva A, Gutzowa I (1993) Polym Test 162:13–25

    CAS  Google Scholar 

  51. Augis JA, Benett JE (1978) J Thermal Anal 13:283

    Article  CAS  Google Scholar 

  52. Kissinger HE (1956) J Res Nat Bur Stand 57:217

    CAS  Google Scholar 

  53. Takhor RL (1971) Advance in nucleation and crystallization of glasses. American Ceramics Society, Columbus, pp 166–172

    Google Scholar 

  54. Doye JK, Frenkel D (1998) J Chem Phys 109:10033–10041

    Article  CAS  Google Scholar 

  55. Cascone E, Martuscelli E, Raimo M (2001) J Mater Sci 36:3591–3598

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial assistance provided by the Council of Scientific and Industrial Research (CSIR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemlata, Maiti, S.N. Nonisothermal crystallization kinetics of PA6 and PA6/SEBS-g-MA blends. J Polym Res 19, 9926 (2012). https://doi.org/10.1007/s10965-012-9926-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9926-1

Keywords

Navigation