Skip to main content
Log in

Design of polyanionic nanocarriers based on modified poly (aspartic acid)s for oral administration: synthesis and characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study designed a series of polyanionic nanocarriers based on biodegradable and biocompatible poly (aspartic acid)s for oral administration. First, polysuccinimide (PSI) was synthesized from L-aspartic acid using acid-catalyzed bulk thermal polycondensation and acid-catalyzed thermal polycondensation in a mixture of mesitylene/sulfolane. PSI-C16 was then synthesized by aminolysis with nucleophile, hexadecylamine to react with PSI known as nucleophilic addition. Finally, a series of partially esterified poly (aspartic acid)s was produced by alkaline treatment to afford an amphiphilic polyanion, poly (sodium aspartate-g-hexadecyl aspartate) (Na-PASP-g-C16-PASP). 1HNMR, FTIR, DSC and GPC were utilized to demonstrate and characterize the polymers. The synthesized polyanion could be self-assembled into the nano-scaled micelles and be independent of pH in phosphoric buffer solutions. The hydrodynamic diameter and zeta potential were measured using the dynamic light scattering (DLS) method, and the critical micelle concentration (CMC) was determined using the fluorescence spectrophotometer. The micellar morphologies were examined using transmission electron microscopy (TEM), and atomic force microscopy (AFM) to present the nano-dimensional sphere. The stability of size transition at different pH levels, from strong acid to alkaline, proved that the micelles could stably transport from the stomach to intestinal lumen prior to arriving in the epithelium of the small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bromberg L (2008) J Control Rel 128:99

    Article  CAS  Google Scholar 

  2. Francis MF, Cristea M, Winnik FM (2004) Pure Appl Chem 76:1321

    Article  CAS  Google Scholar 

  3. Eiamtrakarn S, Itoh Y, Kishimoto J, Yoshikawa Y, Shibata N, Murakami M, Takada K (2002) Biomaterials 23:145

    Article  CAS  Google Scholar 

  4. Koo OM, Rubinstein I, Onyuksel H (2005) Nanomed 1:193

    Article  CAS  Google Scholar 

  5. Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H (2009) J Control Rel 133:238

    Article  CAS  Google Scholar 

  6. Kalaria DR, Sharma G, Beniwal V, Ravi KMN (2009) Pharm Res 26:492

    Article  CAS  Google Scholar 

  7. Ling SS, Magosso E, Khan NA, Yuen KH, Barker SA (2006) Drug Dev Ind Pharm 32:335

    Article  CAS  Google Scholar 

  8. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Proc Nat Acad Sci 106:19268

    Article  CAS  Google Scholar 

  9. Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, Takada K (2006) J Control Rel 111:19

    Article  CAS  Google Scholar 

  10. Ke W, Zhao Y, Huang R, Jiang C, Pei Y (2008) J Pharm Sci 97:2208

    Article  CAS  Google Scholar 

  11. Suh J, Dawson M, Hanes J (2005) Adv Drug Deliv Rev 57:63

    Article  CAS  Google Scholar 

  12. Dawson M, Wirtz D, Hanes J (2003) J Biol Chem 278:50393

    Article  CAS  Google Scholar 

  13. Lai SK, Wang YY, Wirtz D, Hanes J (2009) Adv Drug Deliv Rev 61:158

    Article  CAS  Google Scholar 

  14. Singh R, Lillard JW Jr (2009) J Exp Mol Pathol 86:215

    Article  CAS  Google Scholar 

  15. Mauludin R, Muller RH, Keck CM (2009) Int J Pharm 370:202

    Article  CAS  Google Scholar 

  16. Pandita D, Ahuja A, Velpandian T, Lather V, Dutta T, Khar RK (2009) Pharmazie 64:301

    CAS  Google Scholar 

  17. Jani P, Halbert GW, Langridge J, Florence AT (1990) J Pharm Pharmacol 42:821

    Article  CAS  Google Scholar 

  18. Cai Z, Wang Y, Zhu LJ, Liu ZQ (2010) Curr Drug Metab 11:197

    Article  CAS  Google Scholar 

  19. Woitiski CB, Carvalho RA, Ribeiro AJ, Neufeld RJ, Veiga F (2008) Bio Drugs 22:223

    CAS  Google Scholar 

  20. Florence AT (2005) Drug Discov Today 2:75

    Article  CAS  Google Scholar 

  21. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) Pharm Res 14:1568

    Article  CAS  Google Scholar 

  22. Desai MP, Labhasetwar V, Amidon GL, Levy RJ (1996) Pharm Res 13:1838

    Article  CAS  Google Scholar 

  23. Singh R, Singh S, Lillard JW Jr (2008) J Pharm Sci 97:2497

    Article  CAS  Google Scholar 

  24. McDowell A, McLeod BJ, Rades T, Tucker IG (2009) N Z Vet J 57:370

    Article  CAS  Google Scholar 

  25. Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C (2009) Biomacromolecules 10:1253

    Article  CAS  Google Scholar 

  26. Cone RA (2009) Adv Drug Deliv Rev 61:75

    Article  CAS  Google Scholar 

  27. Van KBJ, Dekker J, Buller HA, Einerhand AW (1995) Am J Physiol 269:G613

    Google Scholar 

  28. Corfield AP, Carroll D, Myerscough N, Probert CS (2001) Front Biosci 6:D1321

    Article  CAS  Google Scholar 

  29. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P et al (1997) Nature 386:410

    Article  CAS  Google Scholar 

  30. Kriwet B, Walter E, Kissel T (1998) J Control Rel 56:149

    Article  CAS  Google Scholar 

  31. Crater JS, Carrier RL (2010) Macromol Biosci 10:1473

    Article  CAS  Google Scholar 

  32. Tachibana Y, Kurisawa M, Uyama H, Kobayashi S (2003) Chem Commun 1:106

    Article  Google Scholar 

  33. Nakato T, Oda K, Yoshitake M, Tomida M (1999) J Macro Sci Pure Appl Chem 36:949

    Google Scholar 

  34. Watanabe E, Tomoshige N, Uyama H (2007) Macromol Symp 249:509

    Article  Google Scholar 

  35. Neri P, Antoni G, Benvenuti F, Cocola F, Gazzei JG (1973) J Med Chem 16:893

    Article  CAS  Google Scholar 

  36. Thombre SM, Sarwade BD (2005) J Macro Sci. Part A: Pure Appl Chem 42:1299

    Google Scholar 

  37. Yang J, Wang F, Fang L, Tan TW (2007) Environ Pollut 149:125

    Article  CAS  Google Scholar 

  38. Zhang W, Huang J, Fan N, Yu J, Liu Y, Liu S et al (2010) Colloids Surface B: Biointerface 81:297

    Article  CAS  Google Scholar 

  39. Obst M, Steinbuchel A (2004) Biomacromolecules 5:1166

    Article  CAS  Google Scholar 

  40. Richard AG, Bhanu K (2002) Science 297:803

    Article  Google Scholar 

  41. Nariyoshi K, Hidetaka H, Hidetoshi O (1995) J Ferment Bioeng 79:317

    Article  Google Scholar 

  42. Wang J, Chow D, Heiati H, Shen WC (2003) J Control Rel 88:369

    Article  CAS  Google Scholar 

  43. Wang J, Wu D, Shen WC (2002) Pharm Res 19:609

    Article  CAS  Google Scholar 

  44. Ekrami HM, Kennedy AR, Shen WC (1995) FEBS Lett 371:283

    Article  CAS  Google Scholar 

  45. Yuan L, Wang J, Shen WC (2005) Pharm Res 22:220

    Article  CAS  Google Scholar 

  46. Yuan L, Wang J, Shen WC (2008) J Control Rel 129:11

    Article  CAS  Google Scholar 

  47. Wang J, Shen D, Shen WC (1999) Pharm Res 16:1674

    Article  CAS  Google Scholar 

  48. Nakato T, Kusuno A, Kakuchi T (2000) J Polym Sci: Part A, Polym Chem 38:117

    Article  CAS  Google Scholar 

  49. Tomida M, Nakato T, Matsunami S, Kakuch T (1997) Polymer 38:4733

    Article  CAS  Google Scholar 

  50. Nakato T, Tomida M, Suwa M, Morishima Y, Kusuno A, Kakuchi T (2000) Polymer Bull 44:385

    Article  CAS  Google Scholar 

  51. Matsubara K, Nakato T, Tomida M (1997) Macromolecular 30:2305

    Article  CAS  Google Scholar 

  52. Chang CJ, Swift G (1999) J Macromol Sci Pure Appl Chem 36:963

    Article  Google Scholar 

  53. Kim JH, Son CM, Jeon YS, Choe WS (2011) J Polym Res 18:881

    Article  CAS  Google Scholar 

  54. Kang HS, Yang SR, Kim JD, Hang SH, Chang IS (2001) Langmuir 17:7501

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Council (NSC 99-2221-E-007-007-MY2), Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Ming Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(a) H1NMR (500MHz, DMSO-d6) of 6% hexadecylamine-modified PSI (PSI5k- C166%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 6% hexadecylamine- modified sodium poly(aspartate) (Na-PASP5k-g-C16-PASP5k6%) in D2O. (DOC 302 kb)

Fig. S2

(a) H1NMR (500MHz, DMSO-d6) of 10% hexadecylamine-modified PSI (PSI5k-C1610%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 10% hexadecylamine - modified sodium poly(aspartate) (Na-PASP5k-g-C16-PASP5k10%) in D2O. (DOC 295 kb)

Fig. S3

(a) H1NMR (500MHz, DMSO-d6) of 15% hexadecylamine-modified PSI (PSI5k-C1615%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 15% hexadecylamine -modified sodium poly(aspartate) (Na-PASP5k-g-C16-PASP5k15%) in D2O. (DOC 310 kb)

Fig. S4

(a) H1NMR (500MHz, DMSO-d6) of 6% hexadecylamine-modified PSI (PSI8k-C166%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 6% hexadecylamine- modified sodium poly(aspartate) (Na-PASP8k-g-C16-PASP8k6%) in D2O. (DOC 238 kb)

Fig. S5

(a) H1NMR (500MHz, DMSO-d6) of 10% hexadecylamine-modified PSI (PSI8k-C1610%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 10% hexadecylamine -modified sodium poly(aspartate) (Na-PASP8k-g-C16-PASP8k10%) in D2O. (DOC 295 kb)

Fig. S6

(a) H1NMR (500MHz, DMSO-d6) of 15% hexadecylamine-modified PSI (PSI8k-C1615%) in DMSO-d6 (b) H1NMR (500MHz , D2O) of 15% hexadecylamine -modified sodium poly(aspartate) (Na-PASP8k-g-C16-PASP8k15%) in D2O. (DOC 310 kb)

Fig. S7

The GPC/SEC chart of Na-PASP5k-g-C16-PASP5k6% with Mw 5417 (DOC 69 kb)

Fig. S8

The GPC/SEC chart of Na-PASP5k-g-C16-PASP5k10% with Mw 6430 (DOC 76 kb)

Fig. S9

The GPC/SEC chart of Na-PASP5k-g-C16-PASP5k15% with Mw 7370 (DOC 74 kb)

Fig. S10

The GPC/SEC chart of Na-PASP8k-g-C16-PASP8k6% with Mw 8757 (DOC 71 kb)

Fig. S11

The GPC/SEC chart of Na-PASP8k-g-C16-PASP8k10% with Mw 10634 (DOC 77 kb)

Fig. S12

The GPC/SEC chart of Na-PASP8k-g-C16-PASP8k15% with Mw 13681 (DOC 75 kb)

Fig.S13

DSC chart of Na-PASP5k-g-C16-PASP5k6% with Tg 52.86 (DOC 138 kb)

Fig. S14

DSC chart of Na-PASP5k-g-C16-PASP5k10% with Tg 47.84 (DOC 68 kb)

Fig. S15

DSC chart of Na-PASP5k-g-C16-PASP5k15% with Tg 48.72 (DOC 121 kb)

Fig. S16

DSC chart of Na-PASP8k-g-C16-PASP8k6% with Tg 77.02 (DOC 51 kb)

Fig. S17

DSC chart of Na-PASP8k-g-C16-PASP8k10% with Tg 57.19°C (DOC 119 kb)

Fig. S18

DSC chart of Na-PASP8k-g-C16-PASP8k15% with Tg 53.58°C (DOC 117 kb)

Fig. S19

I337.5/I335 ratio of Na-PASP5k-g-C16-PASP5k6% with varying concentration (DOC 52 kb)

Fig. S20

I337.5/I335 ratio of Na-PASP5k-g-C16-PAP5k10% with varying concentration (DOC 52 kb)

Fig. S21

I337.5/I335 ratio of Na-PASP5k-g-C16-PASP5k15% with varying concentration (DOC 50 kb)

Fig. S22

I337.5/I335 ratio of Na-PASP8k-g-C16-PASP8k6% with varying concentration (DOC 54 kb)

Fig. S23

I337.5/I335 ratio of Na-PASP8k-g-C16-PASP8k10% with varying concentration (DOC 51 kb)

Fig. S24

I337.5/I335 ratio of Na-PASP8k-g-C16-PASP8k15% with varying concentration (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SP., Chu, IM. Design of polyanionic nanocarriers based on modified poly (aspartic acid)s for oral administration: synthesis and characterization. J Polym Res 19, 9913 (2012). https://doi.org/10.1007/s10965-012-9913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9913-6

Keywords

Navigation