Skip to main content
Log in

MesoDyn simulation study on the phase morphologies of miktoarm PEO-b-PMMA copolymer induced by surfaces

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The compatibility of six groups 12 miktoarm poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers is studied at 400 K via mesoscopic modeling. The values of the order parameters depend on the architectures of the block copolymers deeply, compared with their chain length. Furthermore, the values of order parameters of the copolymer in the same group are the same. A study of plain copolymers induced by 18 neutral surfaces shows that the microscopic phase is influenced by not only the peculiarities of the inducing surface, but also the architecture of copolymers. The degree of surface roughness plays the most significant role on changing phase separation, the rougher the surface, the higher ordered the microscopic phase. However, the 23141 and 23241-type copolymers which are both PEO-rich composition, presents microscopic phase separation as peculiar lamallae phase morphologies induced by every surfaces, included their plain copolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guarini KW, Black CT, Milkove KR, Sandstrom RL (2001) J Vac Sci Technol B 19(6):2784–2788

    Article  CAS  Google Scholar 

  2. Asakawa K, Hiraoka T, Hieda H, Sakurai M, Kamata Y, Naito K (2002) Jpn J Appl Phys 41(10):6112–6118

    Article  CAS  Google Scholar 

  3. Mansky P, Chaikin P, Thomas EL (1995) J Mater Sci 30:1987–1992

    Article  CAS  Google Scholar 

  4. Mansky P, Harrison CK, Chaikin PM, Register RA, Yao N (1996) Appl Phys Lett 68:2586–2588

    Article  CAS  Google Scholar 

  5. Park M, Harrison CK, Chaikin PM, Register RA, Adamson DH (1997) Science 276:1401–1404

    Article  CAS  Google Scholar 

  6. Ferreira A, Costa P, Carvalho H, Nobrega JM, Sencadas V (2011) J Polym Res 18(6):1653–1658

    Article  CAS  Google Scholar 

  7. Pielichowska K (2012) J Polym Res 19(2):9775–9790

    Article  Google Scholar 

  8. Averopoulos A, Chan VZ-H, Lee VY, No D, Miller RD, Hadjichristidis N, Thomas NL (1998) Chem Mater 10:2109–2115

    Article  Google Scholar 

  9. Thurn-Albrecht T, Schotter J, Kastle A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126–2129

    Article  CAS  Google Scholar 

  10. Thurn-Albrecht T, Steiner R, DeRouchey J, Stafford CM, Huang E, Ball M, Tuominen M, Hawker CJ, Russell TP (2000) Adv Mater 12:787–791

    Article  CAS  Google Scholar 

  11. Black CT, Guarini KW, Milkove KR, Baker SM, Tuominen MT, Russell TP (2001) Appl Phys Lett 79:409–411

    Article  CAS  Google Scholar 

  12. Seymour RB, Carraher CE (1988) Polymer chemistry, 2th edn. Marcel Dekker Inc., New York

    Google Scholar 

  13. Munk P, Aminabhavi TM (2002) Introduction to macromolecular science. Wiley-VCH, New York

    Google Scholar 

  14. Carraher CE (2003) Giant molecules: essential materials for everyday living and problem solving, 2th edn. Wiley, New York

    Google Scholar 

  15. Mu D, Huang XR, Lu ZY, Sun CC (2008) Chem Phys 348:122–129

    Article  CAS  Google Scholar 

  16. Patel S, Thakar RS, Wong J, Mcleod SD, Li S (2006) Biomaterials 24:2890–2897

    Article  Google Scholar 

  17. Chiu H, Chern CS, Lee CK, Chang HF (1998) Polymer 39:1609–1616

    Article  CAS  Google Scholar 

  18. Guo SR, Shen LJ, Feng LX (2001) Polymer 42:1017–1022

    Article  CAS  Google Scholar 

  19. Eisa T, Selfton MV (1993) Biomaterials 14(10):755–761

    Article  CAS  Google Scholar 

  20. Sun XY, Zhang HL, Zhang LJ, Wang XY, Zhou QF (2005) Polymer 37(2):102–108

    Article  CAS  Google Scholar 

  21. Valls OT, Farrell JE (1993) Phys Rev E 47:R36–R39

    Article  Google Scholar 

  22. Ramirez-Piscina L, Hernandez-Machado A, Sancho JM (1993) Phys Rev B 48:125–131

    Article  CAS  Google Scholar 

  23. Kawakatsu T, Kawasaki K, Furusaka M, Okabayashi H, Kanaya T (1993) J Chem Phys 99(10):8200–8217

    Article  CAS  Google Scholar 

  24. Shinozaki A, Oono Y (1993) Phys Rev E 48:2622–2654

    Article  CAS  Google Scholar 

  25. Mu D, Li JQ, Wang S (2011) J Appl Polym Sci 119(1):265–274

    Article  CAS  Google Scholar 

  26. Mu D, Li JQ, Zhou YH (2011) J Mol Model 17(3):607–619

    Article  CAS  Google Scholar 

  27. Mu D, Li JQ, Wang S (2011) J Appl Polym Sci 122(1):64–75

    Article  CAS  Google Scholar 

  28. Mu D, Li JQ, Li WD, Wang S (2011) J Mol Model 17(12):3027–3038

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science-Technology Foundation for Middle-Aged and Young Scientists of Shandong Province (BS2010CL048), a Shandong Province Higher School Science & Technology Fund Planning Project (J10LA61), and a Zaozhuang Scientific and Technological Project (200924-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Mu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, D., Li, JQ. & Wang, S. MesoDyn simulation study on the phase morphologies of miktoarm PEO-b-PMMA copolymer induced by surfaces. J Polym Res 19, 9910 (2012). https://doi.org/10.1007/s10965-012-9910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9910-9

Keywords

Navigation