Skip to main content
Log in

Modeling of polymerization rate and microstructure in the anionic polymerization of isoprene using n-butyl lithium and N,N,N′,N′-tetramethylethylenediamine considering different reactivities of the structural units

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A mathematical model for the anionic polymerization of isoprene using n-butyl lithium (n-BuLi) as initiator and N,N,N′,N′-tetramethylethylenediamine (TMEDA) as microstructure modifier, considering a system similar to a tetrapolymerization and a scheme of reaction that considers that the active sites are different in configuration, has been developed. Experimental data of conversion versus time and structure development (1,4-cis, 1,4-trans, vinyl or isopropenyl units) were taken from the literature. Since 1,4-cis structural units are difficult to measure, directly, we used reports based on indirect measurements for natural polyisoprene. The cis structural unit fraction was varied from 0.1 to 0.9 (referred to cis+trans content) in order to provide enough data for parameter estimation purposes. Rate expressions for monomer consumption as well as microstructure and dyad development were obtained from the proposed scheme of reaction. The fraction of active sites and dyad distribution were calculated using Markov chains theory, based on conditional probabilities. The kinetic model correctly describes the performance anionic polymerizations with and without TMEDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

(C):

Cis active sites

(T):

Trans active sites

(D):

Isopropenyl active sites

(V):

Vinyl active sites

FC :

Cis isomer formation

FT :

Trans isomer formation

FD :

Isopropenyl isomer formation

FV :

Vinyl isomer formation

FCC :

Cis-cis dyad formation

FCT :

Cis-trans dyad formation

FCD :

Cis-isopropenyl dyad formation

FCV :

Cis-vinyl dyad formation

FTC :

Trans-cis dyad formation

FTT :

Trans-trans dyad formation

FTD :

Trans-isopropenyl dyad formation

FTV :

Trans-vinyl dyad formation

FDC :

Isopropenyl-cis dyad formation

FDT :

Isopropenyl-trans dyad formation

FDD :

Isopropenyl-isopropenyl dyad formation

FDV :

Isopropenyl-vinyl dyad formation

FVC :

Vinyl-cis dyad formation

FVT :

Vinyl-trans dyad formation

FVD :

Vinyl-isopropenyl dyad formation

FVV :

Vinyl-vinyl dyad formation

Fij:

Total quantity of the ij dyad

i:

Active site that reacts with a isoprene molecule

[I]:

Initiator concentration

j:

Terminal living isomer resulting from the propagation reaction

kij :

Propagation rate constant

kC, kT, kD, kV :

Initiation rate constants

[M]:

Isoprene concentration

MR:

[TMEDA]/[I]o ratio

Р:

\( {\text{matrix = }}\left[ {\matrix{ {{{\text{P}}_{\text{CC}}}} \hfill &{{{\text{P}}_{\text{CT}}}} \hfill &{{{\text{P}}_{\text{CD}}}} \hfill &{{{\text{P}}_{\text{CV}}}} \hfill \\ {{{\text{P}}_{\text{TC}}}} \hfill &{{{\text{P}}_{\text{TT}}}} \hfill &{{{\text{P}}_{\text{TD}}}} \hfill &{{{\text{P}}_{\text{TV}}}} \hfill \\ {{{\text{P}}_{\text{DC}}}} \hfill &{{{\text{P}}_{\text{DT}}}} \hfill &{{{\text{P}}_{\text{DD}}}} \hfill &{{{\text{P}}_{\text{DV}}}} \hfill \\ {{{\text{P}}_{\text{VC}}}} \hfill &{{{\text{P}}_{\text{VT}}}} \hfill &{{{\text{P}}_{\text{VD}}}} \hfill &{{{\text{P}}_{\text{VV}}}} \hfill \\ }<!end array> } \right] \)

Pij :

Conditional probability

[Pc], [PT] [PD], [PV]:

Concentration of active sites

Pc 1,0,0,0, PT 0,1,0,0, PD 0,0,1,0 :

Active sites with one monomeric unit with the negative

PV 0,0,0,1 :

Charge located on the cis, trans, isopropenyl and vinyl isomer units, respectively

PX a,b,f,m :

Living polymer with the negative charge located on the isomer X, (X = C, T, D or V) with a, b, f and m units of cis, trans, isopropenyl and vinyl, respectively

val:

Valvassori equality: (rCT)(rTD)(rDC) = (rCD)(rDT)(rTC)

R:

Cis/(cis+trans) ratio

rij :

Reactivity ratio

Wi :

Fraction of active sites

W :

Vector (Wc, WT, WD, WV)

XCj, XTj, XDj, XVj :

Isoprene conversion converted to the dyad Cj, Tj, Dj, Vj

References

  1. Morton M (1992) Encyclopedia of chemical technology. John-Wiley & Sons

  2. Burel F, Oulyadi H, Bunel C, Grishchenko N, Busko N, Barantsova A, Boiko V (2011) Synthesis and structural characterization of a liquid polyisoprene bearing amidoxime end groups. J Polym Res 18(6):2265–2273

    Article  CAS  Google Scholar 

  3. Ronay GS, Sawye WM (1966) Emulsions and latices of Cis 1, 4-polyisoprene. U.S. Pat. 3 285 869

  4. Morton M (1983) Anionic polymerization: principles and practices. Academic, New York

    Google Scholar 

  5. Hsieh HL, Quirk RP (1996) Anionic polymerization: principles and practical applications. Marcel Dekker, New York

    Google Scholar 

  6. Yamazaki N, Suminoe T, Kambara S (1963) Kinetic studies of isoprene polymerization with several Ziegler-type catalysts. Makromol Chem 65:157–173

    Article  CAS  Google Scholar 

  7. Anderson AG, Gridnev A, Moad G, Rizzardo E, Thang SH (1999) Method of controlling polymer molecular weight and structure. U.S. Pat. 6 271 340

  8. Rivero P, Herrera R (2011) Modeling the kinetics of anionic polymerization in cyclohexane as a non-complexing solvent. J Polym Res 18(4):519–526

    Article  CAS  Google Scholar 

  9. Bywater S (1994) Structure and mechanism in anionic polymerization. Prog Polym Sci 19:287–316

    Article  CAS  Google Scholar 

  10. Chang CC, Halasa AF, Miller JW, Hsu L (1994) Modelling studies of the controlled anionic copolymerization of butadiene and styrene. Polym Int 33(2):151–159

    Article  CAS  Google Scholar 

  11. Bywater S, Firat Y, Black PE (1984) Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects. J Polym Sci Polym Chem Ed 22(3):669–672

    Article  CAS  Google Scholar 

  12. Benvenuta-Tapia JJ, Tenorio-López JA, Montiel C, Ríos-Guerrero L (2008) Kinetics of the anionic polymerization of buta-1,3-diene considering different reactivities of the cis, trans and vinyl structural units. Macromol React Eng 22(5):436–451

    Google Scholar 

  13. Benvenuta-Tapia JJ, Tenorio-López JA, Herrera R (2008) Kinetics of the anionic polymerization of 1,3-butadiene using an initiator composed of alkyl aluminium, n-butyllithium and barium alkoxide to produce high trans-1,4-polybutadiene. Macromol React Eng 2(3):222–232

    Article  Google Scholar 

  14. Benvenuta-Tapia JJ, Tenorio-López JA, Cuevas-Díaz MC (2009) Kinetics approximation considering different reactivities of the structural units formed by the anionic copolymerization of 1,3-butadiene and styrene using Al/Li/Ba as initiator. Macromol React Eng 3(8):473–485

    Article  Google Scholar 

  15. Benvenuta-Tapia JJ, Tenorio-López JA, Castillo-Hermández NE, Cuevas-Díaz MC (2011) Pseudokinetics for the copolymerization of butadiene and styrene produced using n-butyl lithium and N, N, N′, N′-tetramethylethylenediamine, considering different reactivities of the structural units. J Polym Res 18(5):927–938

    Article  Google Scholar 

  16. Price FP (1970) Markov chains and Monte Carlo calculations in polymer science. Marcel Dekker, New York

    Google Scholar 

  17. Boeing JL (1980) Chemical microstructure of polymer chains. Wiley, New York

    Google Scholar 

  18. Morèse-Séguéla B, St-Jacques M, Renaud JM, Prud’homme J (1977) Distribution of cis-1,4 and trans-1,4 units in 1,4-polyisoprene prepared with butyllyhium in nonpolar solvent. Macromolecules 10(2):431–432

    Article  Google Scholar 

  19. González-Aguirre P (2001) Effect of the microstructure of polymers and copolymers model of butadiene and isoprene on its vitreous transition temperature Tg. Ph.D. Thesis (Chem. Eng.), UNAM, México

  20. Hsieh HL (1965) J Polym Sci Part A 3:181–190

    CAS  Google Scholar 

  21. Sutton TL, MacGregor JF (1977) The analysis and design of binary vapour-liquid equilibrium experiments. Part I: Parameter estimation and consistency tests. Can J Chem Eng 55(5):602–608

    Article  CAS  Google Scholar 

  22. Valvassori A, Sartori G (1967) Present status of the multicomponent copolymerization theory. Adv Polym Sci 5:28–58

    Article  CAS  Google Scholar 

  23. Chang CC, Halasa AF, Miller JW (1993) The reaction engineering of the anionic polymerization of isoprene. J Appl Polym Sci 47(9):1589–1599

    Article  CAS  Google Scholar 

  24. Halasa AF, Hsu WL (2002) Synthesis of high vinyl elastomers via mixed organolithium and sodium alkoxide in the presence of polar modifier. Polymer 43(5):7111–7118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Benvenuta-Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenorio-López, J.A., Benvenuta-Tapia, J.J., Vivaldo-Lima, E. et al. Modeling of polymerization rate and microstructure in the anionic polymerization of isoprene using n-butyl lithium and N,N,N′,N′-tetramethylethylenediamine considering different reactivities of the structural units. J Polym Res 19, 9909 (2012). https://doi.org/10.1007/s10965-012-9909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9909-2

Keywords

Navigation