Skip to main content

Advertisement

Log in

Optimization and comparison of polysiloxane acrylic hybrid latex synthesis methods

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two methods were used to prepare polysiloxane-functionalized acrylic latexes via emulsion polymerization. Ethyl acrylate and 2-ethylhexyl acrylate were used in both methods as acrylic phase. In the first method, an acrylic core was prepared with addition of a coupling agent, 3-(trimethoxysilyl) propyl methacrylate, after which cyclic siloxane monomer (octamethylcyclotetrasiloxane) was reacted with the coupling agent. In the second method, a silane-terminated polysiloxane (H-PDMS) was reacted with ethylene glycol dimethacrylate, and then copolymerized with ethyl acrylate and 2-ethylhexyl acrylate in a batch emulsion polymerization. Particle size distribution and particle morphology were evaluated by using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. Core-shell morphology was observed in TEM for the first preparation method as proposed. After film formation, surface tension, morphology and dynamic mechanical properties were investigated. Stratification of polysiloxane was examined by Fourier-transform infrared spectroscopy (FT-IR) and energy dispersive X-ray (EDX). Energy dispersive X-ray data indicated that only the second preparation method had higher silicon content at film-air interface than film-substrate interface. In both methods, storage modulus and surface energy of latex films decreased after grafting polysiloxane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

References

  1. Guyot A, Landfester K, Schork FJ, Wang C (2007) Prog Polym Sci 32:439–1461

    Article  Google Scholar 

  2. Lin M, Chua F, Guyot A, Putaux J-L, Bourgeat-Lami E (2005) Polymer 46:1331–1337

    Article  CAS  Google Scholar 

  3. Zou M, Wang S, Zhang Z, Ge X (2005) Eur Polym J 41:2602–2613

    Article  CAS  Google Scholar 

  4. Stoye D, Freitag W (eds) (1998) Paints, coatings and solvents, 2nd edn. Wiley-VCH, Weinheim, pp 37–39

    Google Scholar 

  5. Wagener KB, Zuluaga F, Wanigatunga S (1996) Trends in Polym Sci 4:157–163

    CAS  Google Scholar 

  6. Zou M, Huang F, Nie J, Zhang Z (2005) Ge X. Polym Int 54:861–869

    Article  CAS  Google Scholar 

  7. Lee Y, Akiba I, Akiyama S (2003) J Appl Polym Sci 87:375–380

    Article  CAS  Google Scholar 

  8. Landfester K, Pawelzik U, Antonietti M (2005) Polymer 46:9892–9898

    Article  CAS  Google Scholar 

  9. Kan CY, Liu DS, Kong XZ, Zhu XL (2001) J Appl Polym Sci 82:3194–3200

    Article  CAS  Google Scholar 

  10. Kan CY, Zhu XL, Yuan Q, Kong XZ (1997) Polym Adv Tech 8:631–633

    Article  CAS  Google Scholar 

  11. Pratt SL, Lucas GM. US Patent 5216057

  12. Reddy PN, Subbaiah A, Gupta S. Chatterji PR, US Patent 2004/0162399.

  13. Kan CY, Kong XZ, Yuan Q, Liu DS (2001) J Appl Polym Sci 80:2251–2258

    Article  CAS  Google Scholar 

  14. He W-D, Pan C-Y (2001) J Appl Polym Sci 80:2752

    Article  CAS  Google Scholar 

  15. Hill LW (1995) Dynamic mechanical and tensile properties. In: Koleske JV (ed) Paint and coating testing manual. ASTM, Philadelphia, pp 534–46

    Google Scholar 

  16. Gu Q, Lin Q, Hu CL (2005) J Appl Polym Sci 95:404

    Article  CAS  Google Scholar 

  17. Peters ACIA, Overbeek GC, Buckmann AJP, Padget JC, Annable T (1996) Prog Org Coat 29:183–194

    Article  CAS  Google Scholar 

  18. Furukawa N, Yamada Y, Furukawa M, Yuasa M, Kimura Y (1997) J Polym Sci Part A Polym Chem 35:2239–51

    Article  CAS  Google Scholar 

  19. Fox T (1956) Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  20. Satoh K, Urban MW (1996) Prog Org Coat 29:195–199

    Article  CAS  Google Scholar 

  21. Patel NM, Dwight DW, Hedrick JL, Webster DC, McGrath JE (1988) Macromolecules 21(9):2689–2696

    Article  CAS  Google Scholar 

  22. Williams TR (1986) J Appl Polym Sci 31:1293–1308

    Article  CAS  Google Scholar 

  23. Adams JL, Quiram DJ, Graessley WW, Register RA, Marchand GR (1996) Macromolecules 29:2929–2938

    Article  CAS  Google Scholar 

  24. Dingenoutsand N, Ballauff M (1999) Langmuir 15:3283–3288

    Article  Google Scholar 

  25. Sung PH, Lin CY (1997) Eur Polym J 33:903–906

    Article  CAS  Google Scholar 

  26. Ozdeger E. US Patent 6420480.

  27. Cao S, Liu B, Deng X, Luo R, Chen H (2007) Polym Int 56:357–363

    Article  CAS  Google Scholar 

  28. Smith WV, Ewart RW (1948) J Chem Phys 16:592

    Article  CAS  Google Scholar 

  29. Delgado J, El-Aasser MS, Silebi CA, Vanderhoff JW (1987) Polym Mat Sci Eng 57:976

    CAS  Google Scholar 

  30. Capek I (2001) Adv Colloid Interface Sci 91:295–334

    Article  CAS  Google Scholar 

  31. Chern C-S, Lin C (2000) H Polymer 41:4473–4481

    Article  CAS  Google Scholar 

  32. Barrere M, Ganachaud F, Bendejacq D, Dourges MA, Maitre C, Hemery P (2001) Polymer 42:7239–7246

    Article  CAS  Google Scholar 

  33. Racles C, Ioanid A, Toth A, Cazacu M, Cozan V (2004) Polymer 45:4275–4283

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Bas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bas, S., Soucek, M.D. Optimization and comparison of polysiloxane acrylic hybrid latex synthesis methods. J Polym Res 19, 9907 (2012). https://doi.org/10.1007/s10965-012-9907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9907-4

Keywords

Navigation