Skip to main content
Log in

Nanoindentation and dynamic mechanical properties of PP/clay nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypropylene/clay nanocomposites were prepared by melt blending technique. A PP homopolymer was melt blended with commercial nanoclay masterbatch at different concentration (5, 10 and 15 wt% of nanoclay) using Laboratory Mixing Extruder (LME). The morphology of the nanocomposites was characterized using Scanning Electron Microscope (SEM). The viscoelastic and thermo-mechanical properties were analyzed via Dynamic Mechanical Analysis (DMA). The morphological analysis showed that the nanoclay was well distributed in the PP matrix. The DMA analysis showed an increase in storage modulus of nanocomposites which indicates an enhancement of stiffness and thermal stability of the prepared nanocomposite samples. In addition, a nanoindentation test was performed to determine the dynamic nanomechanical properties of two nanocomposites samples (NS-5 and NS-15). Load sweep test results showed that NS-15 has a slightly higher storage and loss modulus than that of NS-5. Both the samples also showed a decreasing modulus as a function of depth, indicating the presence of a stiffer surface layer in the samples. Frequency sweep tests were also performed on each sample, and display a moderate viscoelasticity with modulus values that increased slightly as a function of frequency. Load-controlled ramping force scratch test was also carried out and the results showed that NS-15 had a greater elastic recovery than sample NS-5 as well as a greater overall scratch resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alexandre M, Dubois P (2000) Polymer 28:1–63

    Google Scholar 

  2. Giannelis EP (1996) Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  3. Lei SG, Hoa SV, Thon-That MT (2006) Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  4. Fuad MYA, Hanim H, Zarina R, Ishak ZAM, Hassan A (2010) eXPRESS Polym Lett 4:611–620

    Article  CAS  Google Scholar 

  5. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  6. Modesti M, Lorenzetti A, Bon D, Besco S (2005) Polymer 46:10237–10245

    Article  CAS  Google Scholar 

  7. Yuan Q, Awate S, Misra RDK (2006) Eur Polym J 42:1994–2003

    Article  CAS  Google Scholar 

  8. Yuan Q, Misra RDK (2006) Polymer 47:4421–4433

    Article  CAS  Google Scholar 

  9. Modesti M, Lorenzetti A, Bon D, Besco S (2006) Polym Degrad Stabil 91:672–680

    Article  CAS  Google Scholar 

  10. Rohlmann CO, Failla MD, Quinzani LM (2006) Polymer 47:7795–7804

    Article  CAS  Google Scholar 

  11. Koo CM, Kim MJ, Choi MH, Kim SO, Chung IJ (2003) J Appl Polym Sci 88:1526–1535

    Article  CAS  Google Scholar 

  12. Sharma SK, Nayak SK (2008) Polym Degrad Stabil 94:132–138

    Article  Google Scholar 

  13. Ali MA, Elleithy RH (2011) J Appl Polym Sci 121:27–36

    Article  CAS  Google Scholar 

  14. Prashantha K, Soulestin J, Lacrampe MF, Krawczak P, Dupin G, Claes M (2009) Compos Sci Technol 69:1756–1763

    Article  CAS  Google Scholar 

  15. Lee SH, Kim MW, Kim SH, Youn JR (2008) Eur Polym J 44:1620–1630

    Article  CAS  Google Scholar 

  16. Chafidz A, Ali MA, Elleithy R (2011) J Mater Sci 46:6075–6086

    Article  CAS  Google Scholar 

  17. Pavlidou S, Papaspyrides CD (2008) Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  18. Zhang Y-F, Bai S-L, Yang D-Y, Zhang Z, Walter SK (2008) J Polym Sci Pol Phys 46:281–288

    Article  CAS  Google Scholar 

  19. Bouaita N, Bull SJ, Palacio F, White JR (2006) Polym Eng Sci 46:1160–1172

    Article  CAS  Google Scholar 

  20. Chakravartula A, Komvopoulos K (2006) Appl Phys Lett 88:131901

    Article  Google Scholar 

  21. White CC, VanLandinghman MR, Drzal PL, Chang N-K, Chang S-H (2005) J Polym Sci Pol Phys 43:1812–1824

    Article  CAS  Google Scholar 

  22. Zhang Y-F, Bai S-L, Li X-K, Zhang Z (2009) J Polym Sci Pol Phys 47:1030–1038

    Article  CAS  Google Scholar 

  23. Shen L, Phang IY, Liu T, Zeng K (2004) Polymer 45:8221–8229

    Article  CAS  Google Scholar 

  24. Dhakal HN, Zhang ZY, Richardson MOW (2006) Polym Test 25:846–852

    Article  CAS  Google Scholar 

  25. Adewole JK, Al-Mubaiyedh UA, Ul-hamid A, Al-Juhani AA, Hussein IA (2011) Can J Chem Eng 9999:1–13

    Google Scholar 

  26. Shen L, Tjiu WC, Liu T (2005) Polymer 46:11969–11977

    Article  CAS  Google Scholar 

  27. Sinha SK, Song T, Wan X, Tong Y (2009) Wear 266:814–821

    Article  CAS  Google Scholar 

  28. Hu Y, Shen L, Yang H, Wang M, Liu T, Liang T, Zhang J (2006) Polym Test 25:492–497

    Article  CAS  Google Scholar 

  29. Chafidz A, Ali I, Mohsin MEA, Elleithy R, Al-Zahrani S (2012) J Polym Res 19:9860–9876

    Article  Google Scholar 

  30. Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J (2011) J Polym Res 18:1829–1839

    Article  CAS  Google Scholar 

  31. Kontou E, Niaounakis M (2006) Polymer 47:1267–1280

    Article  CAS  Google Scholar 

  32. Wang Y, Huang S-W, Guo J-Y (2009) Polym Composite 30:1218–1225

    Article  CAS  Google Scholar 

  33. Hasegawa N, Okamoto H, Kato M, Usuki A (2000) J Appl Polym Sci 78:1918–1922

    Article  CAS  Google Scholar 

  34. Kim JH, Koo CM, Wang KH (2004) Polymer 45:7719–7727

    Article  CAS  Google Scholar 

  35. Mezger TG (2002) The rheology handbook. Vincentz Verlag, Hannover

    Google Scholar 

  36. Austin JR, Kontopoulou M (2006) Polym Eng Sci 46:1491–1501

    Article  CAS  Google Scholar 

  37. Paglicawan MA, Kim JK, Bang D-S (2010) Polym Composite 31:210–217

    Article  CAS  Google Scholar 

  38. Castel CD, Bianchi O, Oviedo MAS, Liberman SA, Mauler RS, Oliveira RVB (2009) Mater Sci Eng 29:602–606

    Article  Google Scholar 

  39. Kim DH, Fasulo PD, Rodgers WR, Paul DR (2007) Polymer 48:5308–5323

    Article  CAS  Google Scholar 

  40. Briscoe BJ, Fiori L, Pelillo E (1998) J Phys D Appl Phys 31:2395–2405

    Article  CAS  Google Scholar 

  41. Asif SAS, Wahl KJ, Colton RJ (1999) Rev Sci Instrum 70:2408–2413

    Article  CAS  Google Scholar 

  42. VanLandingham MR (2003) J Res Natl Inst Stan 108:249–265

    Article  Google Scholar 

  43. Gu X, Ho DL, Sung L, VanLandingham MR, Nguyen T (2002) Proceeding of Material Research Society (MRS) Symposium. Boston, USA 710:DD109.1–DD109.6

  44. Friedrich K, Sue HJ, Almajid AA (2011) Tribol Int 44:1032–1046

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author’s like to thank Hysitron, USA for nanomechanical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chafidz, A., Ali, I., Mohsin, M.E.A. et al. Nanoindentation and dynamic mechanical properties of PP/clay nanocomposites. J Polym Res 19, 9906 (2012). https://doi.org/10.1007/s10965-012-9906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9906-5

Keywords

Navigation