Skip to main content
Log in

Thermo-mechanical properties of high density polyethylene – fumed silica nanocomposites: effect of filler surface area and treatment

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High density polyethylene was melt compounded with various untreated (hydrophilic) or surface treated (hydrophobic) fumed silica nanoparticles, having different surface areas. The thermo-mechanical properties of the resulting nanocomposites have been thoroughly investigated. Field emission scanning electron microscopy revealed that nanofiller aggregation was more pronounced as the silica surface area increased, while nanofiller dispersion improved with a proper filler functionalization. The homogeneous distribution of fumed silica aggregates at low filler content allowed us to reach remarkable improvements of thermal stability, evidenced by an increase of the degradation temperature and a decrease of the mass loss rate with respect to neat matrix, especially when surface treated nanoparticles were utilized. Interestingly, the stabilizing effect produced by fumed silica nanoparticles was accompanied by noticeable enhancements of the ultimate tensile mechanical properties, both under quasi-static and impact conditions. Concurrently, a progressive enhancement of both elastic modulus and tensile stress at yield with the filler amount, was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2008) High-density polyethylene reinforced with submicron titania particles. Polym Eng Sci 48:448–457

    Article  CAS  Google Scholar 

  2. Bondioli F, Dorigato A, Fabbri P, Messori M, Pegoretti A (2009) Improving the creep stability of high-density polyethylene with acicular titania nanoparticles. J Appl Polym Sci 112:1045–1055

    Article  CAS  Google Scholar 

  3. Cai LF, Lin ZY, Qian H (2010) Dispersion of nano-silica in monomer casting nylon and its effect on the structure and properties of composites. Expr Pol Lett 4(7):397–403

    Article  CAS  Google Scholar 

  4. Mandalia T, Bargaya F (2005) Organo-clay mineral-melted polyolefin nanocomposites. Effect of surfactant/cec ratio. J Phys Chem Solids 67:836–845

    Article  Google Scholar 

  5. Zhang MQ, Rong MZ, Zhang HB, Friedrich K (2003) Mechanical properties of low nano-silica filled high density polyethylene composites. Polym Eng Sci 43(2):490–500

    Article  CAS  Google Scholar 

  6. Zheng X, Wu D, Meng Q, Wang K, Liu Y, Wan L, Ren D (2007) Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method. J Polym Res 15(1):59–65

    Article  Google Scholar 

  7. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene – clay nanocomposites. Expr Pol Lett 1(3):123–131

    Article  CAS  Google Scholar 

  8. Starkova O, Yang JL, Zhang Z (2007) Application of time-stress superposition to nonlinear creep of polyamide 66 filled with nanoparticles of various sizes. Compos Sci Technol 67:2691–2698

    Google Scholar 

  9. Tortora M, Gorrasi M, Vittoria G, Galli V, Ritrovati S, Chiellini E (2002) Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer 43(23):6147–6157

    Article  CAS  Google Scholar 

  10. Zhao C, Qin H, Gong F, Feng M, Zhang S, Yang M (2005) Mechanical, thermal and flammability properties of polyethylen/clay nanocomposites. Polym Degrad Stab 87:183–189

    Article  CAS  Google Scholar 

  11. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  12. Peacock AJ (2000) Handbook of polyethylene. Structure, properties and applications. Marcel Dekker, Inc, New York

    Google Scholar 

  13. Pegoretti A (2009) Creep and fatigue behaviour of polymer nanocomposites. In: Karger-Kocsis J, Fakirov S (eds) Nano- and micromechanics of polymer blends and composites. Carl Hanser Verlag GmbH & Co. KG, Munich, pp 301–339

    Google Scholar 

  14. Sudar A, Moczo J, Voros G, Pukanszky B (2007) The mechanism and kinetics of void formation and growth in particulate filled pe composites. Expr Pol Lett 1(11):763–772

    Article  CAS  Google Scholar 

  15. Dorigato A, Pegoretti A, Penati A (2010) Linear low-density polyethylene/silica micro- and nanocomposites: dynamic rheological measurements and modelling. Expr Pol Lett 4(2):115–129

    Article  CAS  Google Scholar 

  16. Dorigato A, Pegoretti A, Kolarik J (2010) Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: time-strain superposition and creep prediction. Polym Compos 31(11):1947–1955

    Article  CAS  Google Scholar 

  17. Dorigato A, Pegoretti A (2010) Tensile creep behaviour of polymethylpentene/silica nanocomposites. Polym Int 59:719–724

    CAS  Google Scholar 

  18. Dorigato A, Pegoretti A, Fambri L, Slouf M, Kolarik J (2011) Cycloolefin copolymer/fumed silica nanocomposites. J Appl Polym Sci 119(6):3393–3402

    Article  CAS  Google Scholar 

  19. Kontou E, Niaounakis M (2006) Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 47:1267–1280

    Article  CAS  Google Scholar 

  20. Mark HF (2004) Encyclopedia of polymer science and technology, 3rd edn. Wiley, New York

    Google Scholar 

  21. Chrissafis K, Paraskevopoulos KM, Tsiaoussis I, Bikiaris D (2009) Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of hdpe. J Appl Polym Sci 114:1606–1618

    Article  CAS  Google Scholar 

  22. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  23. Barus S, Zanetti M, Lazzari M, Costa L (2009) Preparation of polymeric hybrid nanocomposites based on pe and nanosilica. Polymer 50:2595–2600

    Article  CAS  Google Scholar 

  24. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials Mater Sci Eng. R 28:1–63

    Google Scholar 

  25. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217

    Article  CAS  Google Scholar 

  26. Garcia N, Hoyos M, Guzman J, Tiemblo P (2009) Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym Degrad Stab 94:39–48

    Article  CAS  Google Scholar 

  27. Dorigato A, Pegoretti A, Frache A (2012) Thermal stability of high density polyethylene-fumed silica nanocomposites. J Therm Anal Calorim. doi:10.1007/s10973-012-2421-4

  28. Zhang Z, Yang JL, Friedrich K (2004) Creep resistant polymeric nanocomposites. Polymer 45:3481–3485

    Article  CAS  Google Scholar 

  29. Dorigato A, Pegoretti A, Migliaresi C (2009) Physical properties of polyhedral oligomeric silsesquioxanes–cycloolefin copolymer nanocomposites. J Appl Polym Sci 114:2270–2279

    Article  CAS  Google Scholar 

  30. Ranade A, Nayak K, Fairbrother D, D'Souza NA (2005) Maleated and non maleated polyethylene-montmorillonite layered silicate blown films: Creep, dispersion and cristallinity. Polymer 46:7323–7333

    Article  CAS  Google Scholar 

  31. Fu SY, Xu G, Mai YW (2002) On the elastic modulus of hybrid. Particle/short fiber/polymer composites. Compos B 33:291–299

    Article  Google Scholar 

  32. Drozdov AD, Dorfmann A (2001) The stress–strain response and ultimate strength of filled elastomers. Comput Mater Sci 21:395–417

    Article  CAS  Google Scholar 

  33. Dorigato A, Dzenis Y, Pegoretti A (2011) Nanofiller aggregation as reinforcing mechanism in nanocomposites. Procedia Engineering 10:894–899

    Article  CAS  Google Scholar 

  34. Ahmed S, Jones FR (1990) A review of particluate reinforcement theories for polymer composites. J Mater Sci 25(12):4933–4942

    Article  CAS  Google Scholar 

  35. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Dekker, New York

    Google Scholar 

  36. Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643–1699

    Article  CAS  Google Scholar 

  37. Lewis TB, Nielsen LE (1970) Dynamic mechanical properties of particulate-filled composites. J Appl Polym Sci 14:1449–1471

    Article  CAS  Google Scholar 

  38. Klocek P (1991) Handbook of infrared optical materials. Dekker, New York

    Google Scholar 

  39. Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573

    Article  CAS  Google Scholar 

  40. Miltner HE, Rahier H, Pozsgay A, Pukanszky B, Van Mele B (2005) Experimental evidence for reduced chain segment mobility in poly(amide)-6/clay nanocomposites. Compos Interfaces 12:787–803

    Article  CAS  Google Scholar 

  41. Nicolais L, Nicodemo L (1973) Polym Eng Sci. Strength of particulate composite 13:469–477

    CAS  Google Scholar 

  42. Szazdi L, Pukanszky BJ, Vancso GJ, Pukanszky B (2006) Quantitative estimation of the reinforcing effect of layered silicates in pp nanocomposites. Polymer 47:4638–4648

    Article  CAS  Google Scholar 

  43. Nielsen LE (1966) Simple theory of the stress–strain properties of filled polymers. J Appl Polym Sci 10:97–103

    Article  CAS  Google Scholar 

  44. Dorigato A (2009) Viscoelastic and fracture behaviour of polyolefin based nanocomposites. PhD Disssertation, University of Trento

  45. Jeol S, Fenouillot F, Rousseau A, Masenelli-Varlot K, Gauthier C, Briois J (2007) Drastic modification of the dispersion state of sub-micron silica during biaxial deformation of poly(ethyleneterephthalate). Macromolecules 40:3229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dorigato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorigato, A., D’Amato, M. & Pegoretti, A. Thermo-mechanical properties of high density polyethylene – fumed silica nanocomposites: effect of filler surface area and treatment. J Polym Res 19, 9889 (2012). https://doi.org/10.1007/s10965-012-9889-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9889-2

Keywords

Navigation