Skip to main content

Advertisement

Log in

Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) were prepared using Alcholic Catalyst Chemical Vapor Deposition (ACCVD) technique in order to investigate the effects of their addition on the optical, electrical and mechanical properties of Poly(3-octylthiophene-2,5-diyl) (P3OT) matrix. The absorption spectra of the prepared CNTs and CNT-P3OT nanocomposites were measured in the spectral range 200 nm–3,000 nm at room temperature. The optical energy gap was determined from the obtained UV/Vis absorption spectrum. Optical results reveal that the prepared CNTs are almost single walled. Besides, the addition of CNTs to P3OT polymer matrix will decrease the optical energy gap and enhance the optical absorbance of P3OT matrix. On the other hand, the addition of CNTs to P3OT matrix will increase the electrical conductivity of P3OT matrix up to four orders of magnitude above the percolation threshold (0.44 wt% CNTs). Additionally, I–V characteristics indicate that the conduction mechanism is Ohmic at low applied voltage range while it is due to the trap charge limited at high applied voltage range. Furthermore, the behavior of dc conductivity with temperature was also investigated and the obtained results reveal that the activation energy decreases with CNTs content. Finally, mechanical results reveal that the elastic modulus values increase with the increasing of CNTs content in P3OT matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Koizhaiganova RB, Kim HJ, Vasudevan T, Lee MS (2009) Double-walled carbon nanotube (DWCNT)-poly (3-octylthiophene)(P3OT) composites: electrical, optical and structural investigations. Synth Met 159(23–24):2437–2442

    Article  CAS  Google Scholar 

  2. Qiao Q, Beck J, Lumpkin R, Pretko J, Mcleskey JT (2006) A comparison of fluorine tin oxide and indium tin oxide as the transparent electrode for P3OT/TiO2 solar cells. Sol Energ Mater Sol Cell 90(7–8):1034–1040

    Article  CAS  Google Scholar 

  3. Palacios Lidón E, Perez García B, Abellán J, Miguel C, Urbina A, Colchero J (2006) Nanoscale characterization of the morphology and electrostatic properties of poly (3 octylthiophene)/graphite nanoparticle blends. Adv Funct Mater 16(15):1975–1984

    Article  Google Scholar 

  4. Xu B, Dang S, Han P, Chi M, Liu G, Liu X (2006) Band gaps of two-dimensional photonic crystal structure using conjugated polymer (3-octylthiophenes). Opt Commun 267(2):362–366

    Article  CAS  Google Scholar 

  5. Zhokhavets U, Goldhahn R, Gobsch G, Schliefke W (2003) Dielectric function and one-dimensional description of the absorption of poly (3-octylthiophene). Synth Met 138(3):491–495

    Article  CAS  Google Scholar 

  6. Kazukauskas V, Pranaitis M, Cyras V, Sicot L, Kajzar F (2008) Negative mobility dependence on electric field in poly (3-alkylthiophenes) evidenced by the charge extraction by linearly increasing voltage method. Thin Solid Films 516(24):8988–8992

    Article  CAS  Google Scholar 

  7. Spanggaard H, Krebs FC (2004) A brief history of the development of organic and polymeric photovoltaics. Sol Energ Mater Sol Cell 83(2–3):125–146

    Article  CAS  Google Scholar 

  8. Solís JC, De la Rosa E, Cabrera EP (2006) Absorption and refractive index changes of poly (3-octylthiophene) under NO 2 gas exposure. Opt Mater 29:167–172

    Article  Google Scholar 

  9. Krinichnyi V, Demianets Y, Mironova S (2008) Charge transfer in poly (3-octylthiophene) modified by fullerene derivative. Physica E: Low-dimensional Syst Nanostructure 40(8):2829–2833

    Article  CAS  Google Scholar 

  10. Monedero MA, Luengo GS, Moreno S, Ortega F, Rubio RG, Prolongo MG, Masegosa RM (1999) Calorimetric and dielectric study of a blend containing a conductive polymer: poly (3-octylthiophene) + poly (ethylene-co-vinylacetate). Polymer 40(21):5833–5842

    Article  CAS  Google Scholar 

  11. Nicho M, Hernández F, Hu H, Medrano G, Guizado M, Guerrero J (2009) Physicochemical and morphological properties of spin-coated poly (3-alkylthiophene) thin films. Sol Energ Mater Sol Cell 93(1):37–40

    Article  CAS  Google Scholar 

  12. Valentini L, Armentano I, Biagiotti J, Marigo A, Santucci S, Kenny J (2004) AC conductivity of conjugated polymer onto self-assembled aligned carbon nanotubes. Diam Relat Mater 13(2):250–255

    Article  CAS  Google Scholar 

  13. Lopez-Mata C, Nicho M, Hu H, Cadenas-Pliego G, García-Hernández E (2005) Optical and morphological properties of chemically synthesized poly3-octylthiophene thin films. Thin Solid Films 490(2):189–195

    Article  CAS  Google Scholar 

  14. Kymakis E, Alexandou I, Amaratunga G (2002) Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation. Synth Met 127(1–3):59–62

    Article  CAS  Google Scholar 

  15. Cao Y, Liu Z, Gao X, Yu J, Hu Z (2011) Dynamic rheological properties and microstructures of liquid-crystalline poly (p-phenyleneterephthalamide) solutions in the presence of single-walled carbon nanotubes. J Polym Res 18(2):263–271

    Article  CAS  Google Scholar 

  16. Kim SD, Kim JW, Im JS, Kim YH, Lee YS (2007) A comparative study on properties of multi-walled carbon nanotubes (MWCNTs) modified with acids and oxyfluorination. J Fluor Chem 128(1):60–64

    Article  CAS  Google Scholar 

  17. Meng H, Sui G, Fang P, Yang R (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49(2):610–620

    Article  CAS  Google Scholar 

  18. Kymakis E, Amaratunga G (2003) Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Sol Energ Mater Sol Cell 80(4):465–472

    Article  CAS  Google Scholar 

  19. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401

    Article  CAS  Google Scholar 

  20. Murakami Y, Miyauchi Y, Chiashi S, Maruyama S (2003) Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chem Phys Lett 377(1–2):49–54

    Article  CAS  Google Scholar 

  21. Unalan HE, Chhowalla M (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153

    Article  CAS  Google Scholar 

  22. Ayesh AS (2010) Electrical and optical characterization of PMMA doped with Y 0.0025 Si 0.025 Ba 0.9725 (Ti (0.9) Sn 0.1) O 3 ceramic. Chin J Polym Sci 28(4):537–546

    Article  CAS  Google Scholar 

  23. Jeong MS, Byeon CC, Cha OH, Jeong H, Han JH, Choi YC, An KH, Oh KH, Kim KK, Lee YH (2008) Purity measurement of single-walled carbon nanotubes by UV–VIS-NIR absorption spectroscopy and thermogravimetric analysis. Nano 3(2):101

    Article  CAS  Google Scholar 

  24. Kim DY, Yun YS, Bak H, Cho SY, Jin HJ (2010) Aspect ratio control of acid modified multiwalled carbon nanotubes. Curr Appl Phys 10(4):1046–1052

    Article  Google Scholar 

  25. Chen D, Sasaki T, Tang J, Qin LC (2008) Effects of deformation on the electronic structure of a single-walled carbon nanotube bundle. Physical Review B 77(12):125412

    Article  Google Scholar 

  26. Ayesh AS, Abdel-Rahem RA (2008) Optical and electrical properties of polycarbonate/MnCl2 composite films. J Plast Film Sheet 24(2):109

    Article  CAS  Google Scholar 

  27. Burrows P, Bulovic V, Forrest S, Sapochak L, McCarty D, Thompson M (1994) Reliability and degradation of organic light emitting devices. Appl Phys Lett 65(23):2922–2924

    Article  CAS  Google Scholar 

  28. Antoniadis H, Abkowitz M, Hsieh B (1994) Carrier deep trapping mobility lifetime products in poly (p phenylene vinylene). Appl Phys Lett 65(16):2030–2032

    Article  CAS  Google Scholar 

  29. Shen Z, Burrows PE, Bulovic V, McCarty DM, Thompson ME, Forrest SR (1996) Temperature dependence of current transport and electroluminescence in vacuum deposited organic light emitting devices. Jpn J Appi Phys 35:L401–L404

    Article  CAS  Google Scholar 

  30. Blom P, De Jong M, Vleggaar J (1996) Electron and hole transport in poly (p phenylene vinylene) devices. Appl Phys Lett 68(23):3308–3310

    Article  CAS  Google Scholar 

  31. Burrows P, Shen Z, Bulovic V, McCarty D, Forrest S, Cronin J, Thompson M (1996) Relationship between electroluminescence and current transport in organic heterojunction light emitting devices. J Appl Phys 79(10):7991–8006

    Article  CAS  Google Scholar 

  32. Campos R, Kovalev I, Guo Y, Wakili N, Skotheim T (1996) Red electroluminescence from a thin organometallic layer of europium. J Appl Phys 80(12):7144–7150

    Article  CAS  Google Scholar 

  33. Abkowitz M, Facci J, Rehm J (1998) Direct evaluation of contact injection efficiency into small molecule based transport layers: influence of extrinsic factors. J Appl Phys 83:2670

    Article  CAS  Google Scholar 

  34. Musa I, Eccleston W, Higgins S (1998) Further analysis of space-charge-limited currents in polybenzo [c] thiophene films. J Appl Phys 83:5558

    Article  CAS  Google Scholar 

  35. Bunakov A, Lachinov A, Salikhov R (2004) Current voltage characteristics of thin poly (biphenyl 4 ylphthalide) films. Wiley Online Library, p 387–392

  36. Abu Abdeen M, Ghani S (2001) Swelling and electrical properties of rubber vulcanizates loaded with paraffin wax. J Appl Polym Sci 81(13):3169–3177

    Article  CAS  Google Scholar 

  37. Wang S, Liang Z, Gonnet P, Liao YH, Wang B, Zhang C (2007) Effect of nanotube functionalization on the coefficient of thermal expansion of nanocomposites. Adv Funct Mater 17(1):87–92

    Article  CAS  Google Scholar 

  38. Bauwens Crowet C, Bauwens J, Homes G (1969) Tensile yield stress behavior of glassy polymers. J Polymer Sci Part A 2: Polymer Physics 7(4):735–742

    Article  CAS  Google Scholar 

  39. Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of Nafion: matching fourier and real space studies of corresponding films and solutions. Macromolecules 37(20):7772–7783

    Article  CAS  Google Scholar 

  40. Van der Heijden P, Rubatat L, Diat O (2004) Orientation of drawn Nafion at molecular and mesoscopic scales. Macromolecules 37(14):5327–5336

    Article  Google Scholar 

  41. Liu D, Kyriakides S, Case SW, Lesko JJ, Li Y, McGrath JE (2006) Tensile behavior of Nafion and sulfonated poly (arylene ether sulfone) copolymer membranes and its morphological correlations. J Polymer Sci, Part B: Polymer Phys 44(10):1453–1465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the King Abdelaziz City for Science and Technology (KACST), Saudi Arabia for funding and providing the facilities required for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman S. Ayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Abdeen, M., Ayesh, A.S. & Al Jaafari, A.A. Physical characterizations of semi-conducting conjugated polymer-CNTs nanocomposites. J Polym Res 19, 9839 (2012). https://doi.org/10.1007/s10965-012-9839-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9839-z

Keywords

Navigation