Skip to main content
Log in

Diffusivity of alkanes in polystyrene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Gravimetry is used to study the diffusivity of a homologous series of linear alkanes (Cn, with n = 8, 10, 12, 14 and 16) in amorphous polystyrene at temperatures ranging from 45 °C to 145 °C, i.e. both below and above the polymer glass transition temperature (100 °C). All the mass uptake results obtained are well described by a simple Fickian model (for t < t1/2) and are used to calculate the corresponding diffusion coefficients (D) using the thin-film approximation of the Fickian equation. For all the alkanes considered, the temperature dependency of the diffusion coefficients is non-Arrhenius in character, over the broad temperature intervals considered. For any particular temperature log(D) varies linearly (R2 > 0.993, for all temperatures) with respect to the number of carbon atoms (n) in the alkyl chain, log(D) decreasing when n increases. For each liquid penetrant, over the temperature intervals considered, its log(D) also increases linearly (R2 > 0.996 for all the systems) with the decrease in the penetrant’s liquid viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yampolskii Y, Pinnau I, Freeman BD (eds) (2006) Materials science of membranes for gas and vapor separation. John Wiley & Sons

  2. Vieth WR (1991) Diffusion in and through polymers - principles and applications. Hanser Publishers, Munich

    Google Scholar 

  3. Neogi P (ed) (1996) Diffusion in polymers. Marcel Dekker, Inc., New York

    Google Scholar 

  4. Böddeker KW (2008) Liquid separations with membranes. Springer, Berlin Heidelberg

    Google Scholar 

  5. Snow D et al (2007) Static deflection measurements of cantilever arrays reveal polymer film expansion and contraction. J Colloid Interface Sci 316(2):687–693

    Article  CAS  Google Scholar 

  6. Igarashi S et al (2006) Swelling signals of polymer films measured by a combination of micromechanical cantilever sensor and surface plasmon resonance spectroscopy. Sensor Actuat B-Chem 117(1):43–49

    Article  Google Scholar 

  7. Elabd YA et al (2001) Effect of penetrant-polymer interactions on molecular diffusion in conformational isomers of a heterogeneous polymer. Macromolecules 34(18):6268–6273

    Article  CAS  Google Scholar 

  8. Zhao TJ, Beckham HW, Gibson HW (2003) Quantitative determination of threading in rotaxanated polymers by diffusion-ordered NMR spectroscopy. Macromolecules 36(13):4833–4837

    Article  CAS  Google Scholar 

  9. Cosgrove T et al (2007) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 1. Solvent diffusion studies. J Polym Res 14(3):167–174

    Article  CAS  Google Scholar 

  10. Mukherjee M et al (2007) Effect of solvent-polymer interaction in swelling dynamics of ultrathin polyacrylamide films: A neutron and X-ray reflectivity study. Macromolecules 40(4):1073–1080

    Article  CAS  Google Scholar 

  11. Wang D, Storey RF, Mauritz KA (1992) Investigation of the diffusion of di-N-hexyl phthalate in rubbery poly(Vinyl chloride) using electrical-impedance spectroscopy. Macromolecules 25(11):2869–2874

    Article  CAS  Google Scholar 

  12. Pu Y et al (2001) Probe diffusion in thin PS free-standing films. Macromolecules 34(24):8518–8522

    Article  CAS  Google Scholar 

  13. Cherdhirankorn T et al (2009) Fluorescence correlation spectroscopy study of molecular probe diffusion in polymer melts. Macromolecules 42:4858–4866

    Article  CAS  Google Scholar 

  14. Morrissey P, Vesely D (2000) Accurate measurement of diffusion rates of small molecules through polymers. Polymer 41(5):1865–1872

    Article  CAS  Google Scholar 

  15. Storey RF, Mauritz KA, Cox BD (1989) Diffusion of various Dialkyl Phthalate Plasticizers in PVC. Macromolecules 22(1):289–294

    Article  CAS  Google Scholar 

  16. Storey RF, Mauritz KA, Cole BB (1991) Diffusion of Bis(2-Ethylhexyl) phthalate above and below the glass-transition temperature of Poly(Vinyl Chloride). Macromolecules 24(2):450–454

    Article  CAS  Google Scholar 

  17. Storey RF, Mauritz KA, Carter ML (1991) Corrected densities and revised coefficients for diffusion of various dialkyl phthalate plasticizers in PVC. Macromolecules 24(25):6784–6785

    Article  CAS  Google Scholar 

  18. Manoj KC et al (2010) Aromatic liquid transport through filled EPDM/NBR blends. J Polym Res 17(1):1–9

    Article  CAS  Google Scholar 

  19. Mudassir J, Ranjha NM (2008) Dynamic and equilibrium swelling studies: crosslinked pH sensitive methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels. J Polym Res 15(3):195–203

    Article  CAS  Google Scholar 

  20. Arnould D, Laurence RL (1992) Size effects on solvent diffusion in polymers. Ind Eng Chem Res 31:218–228

    Article  CAS  Google Scholar 

  21. Lv H-L, WANG B-G (2006) Prediction of solvent diffusion coefficient in amorphous polymers based on an equation-of-state. J Polymer Sci, Part B: Polymer Phys 44:1000–1009

    Article  CAS  Google Scholar 

  22. Vrentas JS, Vrentas CM, Faridi N (1996) Effect of solvent size on solvent self-diffusion in polymer-solvent systems. Macromolecules 29(9):3272–3276

    Article  CAS  Google Scholar 

  23. Vrentas JS, Vrentas CM (1994) Solvent self-diffusion in glassy polymer-solvent systems. Macromolecules 27(20):5570–5576

    Article  CAS  Google Scholar 

  24. Jiang WH, Han R (2000) Prediction of solvent-diffusion coefficient in polymer by a modified free-volume theory. J Appl Polym Sci 77(2):428–436

    Article  CAS  Google Scholar 

  25. Makrodimitri ZA, Economou IG (2008) Atomistic simulation of poly(dimethylsiloxane) permeability properties to gases and n-alkanes. Macromolecules 41:5899–5907

    Article  CAS  Google Scholar 

  26. Mozaffari F, Eslami H, Moghadasi J (2010) Molecular dynamics simulation of diffusion and permeation of gases in polystyrene. Polymer 51(1):300–307

    Article  CAS  Google Scholar 

  27. Bharadwaj RK, Boyd RH (1999) Small molecule penetrant diffusion in aromatic polyesters: a molecular dynamics simulation study. Polymer 40:4229–4236

    Article  CAS  Google Scholar 

  28. Harogoppad SB, Aminabhavi TM (1991) Diffusion and sorption of organic liquids through polymer membranes. 5. Neoprene, Styrene-Butadiene-Rubber, Ethylene-Propylene-Diene Terpolymer, and Natural Rubber versus Hydrocarbons (C8 - C16). Macromolecules 24:2598–2605

    Article  CAS  Google Scholar 

  29. Aminabhavi TM, Khinnavar RS (1993) Diffusion and sorption of organic liquids through polymer membranes: 10. Polyurethane, nitrile-butadiene rubber and epichlorohydrin versus aliphatic alcohols (C1-C5). Polymer 34(5):1006–1018

    Article  CAS  Google Scholar 

  30. Chen SP, Ferry JD (1968) The diffusion of radioactively tagged n-hexadecane and n-dodecane through rubbery polymers. effects of temperature, cross-linking, and chemical structure. Macromolecules 1(3):270–278

    Article  CAS  Google Scholar 

  31. Berens AR, Hopfenberg HB (1982) Diffusion of organic vapors at low concentrations in glassy pvc, polystyrene, and PMMA. J Membr Sci 10(2–3):283–303

    Article  CAS  Google Scholar 

  32. Coutandin J et al (1985) Diffusion of dye molecules in polymers above and below the glass-transition temperature studied by the holographic grating technique. Macromolecules 18(3):587–589

    Article  CAS  Google Scholar 

  33. van Krevelen DW, te Nijenhuis K (2009) Chapter 18 - Properties determining mass transfer in polymeric systems, in Properties of polymers: Their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam, pp 655–702

    Google Scholar 

  34. Southern E, Thomas AG (1967) Diffusion of liquids in crosslinked rubbers. Trans Faraday Soc 63:1913–1921

    Article  CAS  Google Scholar 

  35. Vesely D (2001) Molecular sorption mechanism of solvent diffusion in polymers. Polymer 42(9):4417–4422

    Article  CAS  Google Scholar 

  36. Harogoppad SB, Aminabhavi TM (1991) Diffusion and sorption of organic liquids through polymer membranes. II. Neoprene, SBR, EPDM, NBR, and natural rubber versus n-Alkanes. J Appl Polym Sci 42:2329–2336

    Article  CAS  Google Scholar 

  37. Mills PJ, Kramer EJ (1986) The effect of molecular-size on non-fickian sorption in glassy-polymers. J Mater Sci 21(12):4151–4156

    Article  CAS  Google Scholar 

  38. Gall TP, Lasky RC, Kramer EJ (1990) Case-II diffusion - effect of solvent molecule size. Polymer 31(8):1491–1499

    Article  CAS  Google Scholar 

  39. Kwan KS, Subramaniam CNP, Ward TC (2003) Effect of penetrant size and shape on its transport through a thermoset adhesive: I. n-alkanes. Polymer 44(10):3061–3069

    Article  CAS  Google Scholar 

  40. Kwan KS, Subramaniam CNP, Ward TC (2003) Effect of penetrant size, shape, and chemical nature on its transport through a thermoset adhesive. II Esters Polymer 44(10):3071–3083

    CAS  Google Scholar 

  41. Bernardo G, Vesely D (2008) Solubility of alkanes in a polystyrene matrix. J Appl Polym Sci 110:2393–2398

    Article  CAS  Google Scholar 

  42. Bernardo G, Vesely D (2010) Anomalous swelling of a polystyrene matrix in organic solvents. J Appl Polym Sci 115(4):2402–2408

    Article  CAS  Google Scholar 

  43. Crank J (1979) The mathematics of diffusion, 2nd edn. Oxford Science, Oxford

    Google Scholar 

  44. Bernardo G, Choudhury RP, Beckham HW (2012) Diffusivity of small molecules in polymers: Carboxylic acids in polystyrene. Polymer 53:976–983

    Google Scholar 

  45. Brandrup J, Immergut EH, Grulke EA (2003) Polymer Handbook. 4th ed. John Wiley & Sons

  46. van Krevelen DW, te Nijenhuis K (2009) Chapter 4 - Volumetric properties, in Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. Elsevier, Amsterdam, pp 71–108

    Google Scholar 

  47. von Meerwall E et al (1998) Diffusion of liquid n-alkanes: free-volume and density effects. J Chem Phys 108(10):4299–4304

    Article  Google Scholar 

  48. Daubert TE et al (1988) Physical and thermodynamical properties of pure chemicals. Taylor & Francis

  49. Hansen CM (2007) Hansen solubility parameters - a user’s handbook. CRC, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

Gabriel Bernardo acknowledges financial support from the IPC’s (Institute for Polymers and Composites) strategic project: “PEst-C/CTM/LA0025/2011” (Projecto Estratégico -LA 25 - 2011–2012 - Strategic Project - LA 25 - 2011–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bernardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardo, G. Diffusivity of alkanes in polystyrene. J Polym Res 19, 9836 (2012). https://doi.org/10.1007/s10965-012-9836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9836-2

Keywords

Navigation