Skip to main content
Log in

Dielectric behavior of polyetheretherketone (PEEK) using TSDC technique

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The dielectric relaxation behavior of Polyetheretherketone (PEEK) has been investigated by using thermally stimulated discharge current (TSDC) technique. The dependence of TSDC characteristics of PEEK on poling temperature (TP) [50–200 °C], poling field (EP) [200–500 kV/cm], storage time (tS) [2–120 hrs] and various thicknesses 25 μm, 50 μm and 75 μm have been investigated in the temperature range [60–230 °C]. The TSDC spectra shows a prominent maxima around glass transition temperature (Tg) i.e. at 143 °C named as α-peak and the other peak is observed around 200 °C named as β-peak. The α-dipolar relaxation is taking place because of the movement of ketone (>C = 0) dipoles linked to the main chain. The β-peak is attributed to the space charges. It is observed that the magnitude of α-peak increases with the increase in poling field. The peak current and area under the α-peaks are found to be diminished with the increase of storage time (ts) for electrets. The amplitude of α-peak decreases with the increase in thickness. The activation energies for PEEK sample at different conditions in the present work are found to be 0.38 eV–1.70 eV. The values of activation energy (U) and pre-exponential factor (τ o) for α- relaxation are determined using Bucci plot method and support the nature of the relaxations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fujita S, Shinyama K, Baba M (1999) 10th international symposium on electrets. IEEE, pp. 115–118.

  2. Sakamoto WK (2003) Electica Quimica 28(2):49–53

    CAS  Google Scholar 

  3. Atkinson JR, Hay JN, Jenkins MJ (2002) Polymer 43:731–735

    Article  CAS  Google Scholar 

  4. Bucci C, Fieschi R (1964) Phys Rev Lett 12(1):16–19

    Article  Google Scholar 

  5. Turnhout JV (1980) In: Sessler GM (ed) Electrets, 33. Berlin, Springer-Verlag

    Google Scholar 

  6. Perlman MM (1973) Electrets charge storage and transport in dielectrics. The Electro Chemical Society, Princeton

    Google Scholar 

  7. Turnhout JV (1975) Thermally Stimulated discharge current of polymer electrets. Elsevier, Amsterdam

    Google Scholar 

  8. Shukla P, Gaur MS (2008) Iranian Polymer Journal 17(3):183–190

    CAS  Google Scholar 

  9. Das-Gupta DK, Doughty K (1987) IEEE Trans Electr Insul 22:1–7

    Article  Google Scholar 

  10. Das-Gupta D K, Goodings A (1989) Proceedings of CEIDP-1989, pp. 186–191.

  11. Tanida M, Ishikawa I, Yoshino A, Sunazuka H, Niwa T (1991) Proceedings of CEIDP-1991, pp. 374–380.

  12. Helgee B, Bjellheim P (1991) IEEE Trans Electr Insul 26:1147–1152

    Article  CAS  Google Scholar 

  13. Kang PH, Lee C, Kim KY (2007) J Ind Eng Chem 13(2):250–256

    CAS  Google Scholar 

  14. Kim EJ, Ohki Y (1995) IEEE Transactions on Dielectrics and Electrical Insulation 2(1):74–83

    Article  CAS  Google Scholar 

  15. Pan J, Li K, Li J, Hsu T, Wang Q (2009) Appl Phys Lett 95(022902):1–3

    Google Scholar 

  16. Vanderschueren J, Gasiot J (1979) Thermally stimulated relaxations in solids. Top Appl Phys 37:135–223. doi:10.1007/3540095950_10

    Article  CAS  Google Scholar 

  17. Gaur MS, Ramlal, Shukla P, Saxena P, Tiwari RK (2008) Indian Journal of Pure and applied physics 46:118–122

    CAS  Google Scholar 

  18. Alaggiriswami AA, Narayan KS, Raju G (2002) J Phys D: Appl Phys 35:2850–2856

    Article  Google Scholar 

  19. Li HM, Fouracre RA, Tedford DJ, Banford HM, Given MJ (1994) IEEE 1994 Annual Report, Conference on Digital Object Identifier: 693–698, doi:10.1109/CEIDP.1994.592050.

  20. Hino T, Suzuki K, Yamashita K (1973) Jpn J Appl Phys 12(5):651–656

    Article  CAS  Google Scholar 

  21. Lin JF, Ho CF, Lin TS, Huang SK (1999) J Polym Res 6(1):1–9

    Article  CAS  Google Scholar 

  22. Ma G, Yue X, Zhang S, Rong C, Wang G (2011) J Polym Res 18:2045–2053

    Article  CAS  Google Scholar 

  23. Blundell DJ, Osborn BN (1983) Polymer 24:953–958

    Article  CAS  Google Scholar 

  24. Sauer B, Hsiao BS (1993) J Polymer Sci B Polymer Phys 31(8):917–932

    Article  CAS  Google Scholar 

  25. Frohlich H (1958) Theory of dielectrics. Oxford University Press, London

    Google Scholar 

  26. Daniel VV (1967) Dielectric relaxations. Academic, London

    Google Scholar 

  27. Clemett C, Davies M (1962) Trans Faraday Soc 58:1718–1728

    Article  CAS  Google Scholar 

  28. Pillai PKC, Gupta BK, Goel M (1981) J Polymer Sci Polymer Ed 19(9):1461–1470

    Article  CAS  Google Scholar 

  29. Khare PK, Sahu DK, Verma A, Srivastava RK (2004) Indian Journal of Pure & Applied Physics 42:693–696

    CAS  Google Scholar 

  30. Gaur MS, Shukla P, Tiwari RK, Tanwar A, Singh SP (2008) Indian Journal of Pure & Applied Physics 46:535–539

    CAS  Google Scholar 

  31. Belana J, Mudarra M, Colomer P, Latour M (1995) J Mater Sci 30:5241–5245

    Article  CAS  Google Scholar 

  32. Wei L, Gang T, Yiqin Z (1987) Chin J Polymer Sci 5(4):285–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, R., Sharma, V. & Sharma, J.K. Dielectric behavior of polyetheretherketone (PEEK) using TSDC technique. J Polym Res 19, 9826 (2012). https://doi.org/10.1007/s10965-012-9826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-9826-4

Keywords

Navigation