Skip to main content
Log in

Preparation and physicochemical properties of digested collagen fragments with varying molecular weights

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The porcine dermal collagen molecules were successfully digested by clostridium histolyticun collagenases (CHC) and then ultra-filtrated using varying grades of ultra-filtration membranes. Gel permeation analyses revealed that collagen fragments with varying molecular weights were successfully segregated using ultra-filtration membranes with varying grades of pore sizes. Fourier transform infra-red analyses suggest that digested collagen fragments and digested collagen fragments prepared after ultra-filtration still preserve certain percentages of triple helix structures of collagen molecules, although the percentages of preserved triple helix structures present in digested and ultra-filtrated collagen fragments reduce significantly as their Mw values reduce. Thermal and denaturation temperature analysis suggest that denaturation temperature and thermal degradation temperature values of digested collagen fragments and ultra-filtrated collagen fragments decrease significantly as their Mw values reduce. The absorbed/desorbed amounts of digested and ultra-filtrated collagen fragments in PA6/PP flocking specimens are significantly higher than those of the original collagens, and increase significantly as their Mw values reduce. Possible reasons accounting for the above degradation, ultra-filtration physicochemical, absorbing and desorbing properties of original, digested and ultra-filtrated digested collagen molecules are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li GY, Fukunaga S, Takenouchi K, Nakamura F (2005) Int J Cosmet Sci 27:101

    Article  Google Scholar 

  2. Chvapil M, Echmayer Z (1985) J Cosmet Sci 7:41

    Article  Google Scholar 

  3. Todd RD (1975) Drug Cosmet Indust 117:50

    CAS  Google Scholar 

  4. Morimura S, Nagata H, Uemura Y, Fahmi A, Shigematsu T, Kida K (2002) Process Biochem 37:1403

    Article  CAS  Google Scholar 

  5. Hickman D, Sims TJ, Miles CA, Bailey AJ (2000) J Biotech 79:245

    Article  CAS  Google Scholar 

  6. French MF, Mookhtiar KA, Wart HEV (1986) Biochem 26:681

    Google Scholar 

  7. Yeh JT, Chang HJ, Xiao LF, Yang L, Zhu P, Huang GX, Yao WH (2010) e-Polymers no. 110

  8. French MF, Bhown A, Wart HEV (1992) J Protein Chem 11:83

    Article  CAS  Google Scholar 

  9. Watanabe K (2004) Appl Microbiol Biotechnol 63:520

    Article  CAS  Google Scholar 

  10. Matsushita O, Koide T, Kobayashi R, Nagata K, Okabe A (2001) J Biol Chem 276:8761

    Article  CAS  Google Scholar 

  11. Hasty KA, Jeffrey JJ, Hibbs MS, Welgus HG (1987) J Biol Chem 262:10048

    CAS  Google Scholar 

  12. Wu H, Byrne MH, Stacey A, Goldring MB (1990) Proc Natl Acad Sci 87:5888

    Article  CAS  Google Scholar 

  13. Arnett SN, Fields G, Hansen HB, Wart HEV (1991) J Biol Chem 266:6747

    Google Scholar 

  14. Kima KS, Leeb KH, Choa K, Park CE (2001) J Membrane Sci 199:135

    Article  Google Scholar 

  15. Nagai T, Araki Y, Suzuki N (2002) Food Chem 78:173

    Article  CAS  Google Scholar 

  16. Yeh JT, Chang HJ, Zhou YH, Huang CY, Huang KX, Chen KN (2012) Mater Chem Phys (submitted for publication)

  17. Liu X, Wu H, Byrne M, Jeffrey J, Krane S, Jaenisch R (1995) J Cell Biol 130:227

    Article  CAS  Google Scholar 

  18. Denis A, Brambati N, Dessauvages B, Guedj S, Ridoux C, Meffre N, Autier C (2008) Food Hydrocolloid 22:989

    Article  CAS  Google Scholar 

  19. Sivakumar P, Suguna L, Chandrakasan G (2000) Comp Biochem Physiol B 125:555

    Article  CAS  Google Scholar 

  20. Plepis AMDG, Goissis G, Das-Gupta DK (1996) Polym Eng Sci 24:2932

    Article  Google Scholar 

  21. Friess W, Lee G (1996) Biomaterials 17:2289

    Article  CAS  Google Scholar 

  22. Duan R, Zhang JJ, Du XQ, Konno K (2009) Food Chem 112:702

    Article  CAS  Google Scholar 

  23. Rabotyagova OS, Cebe P, Kaplan DL (2008) Mater Sci Eng C 28:1420

    Article  CAS  Google Scholar 

  24. Gordon PL, Huang C, Lode RC, Yannas IV (1974) Macromolecules 7:954

    Article  CAS  Google Scholar 

  25. Cui FX, Xue CH, Li ZJ, Zhang YQ (2007) Food Chem 100:1120

    Article  CAS  Google Scholar 

  26. Machado AAS, Martins VCA, Plepis AMG (2002) J Therm Anal Calorim 67:491

    Article  CAS  Google Scholar 

  27. Pietrucha K, Krane S (2005) Int J Biol Macromol 36:299

    Article  CAS  Google Scholar 

  28. Li Y, Li YW, Du ZL, Li GY (2008) Thermochim Acta 469:71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their appreciation to the Department of Industrial Technology, Ministry of Economic Affairs (95-EC-17-A-11-S1-057, 96-EC-17-A-11-S1-057, 97-EC-17-A-11-S1-057 and 99-EC-17-A-11-S1-155) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jen-taut Yeh or Wei-hua Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, Jt., Chang, Hj., Yang, L. et al. Preparation and physicochemical properties of digested collagen fragments with varying molecular weights. J Polym Res 19, 26 (2012). https://doi.org/10.1007/s10965-012-0026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0026-z

Keywords

Navigation