Skip to main content
Log in

Surface functionalized polymer particles and thereby generation of PNIPAAM grafted monoliths by shear aggregation and ATRP

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Surface functionalization of the materials to achieve functionalities like thermal responsiveness has found increasing interest. In the current study, such a functionalization with poly(N-isopropylacrylamide) (PNIPAAM) polymer has been reported by controlled grafting from the surface of aggregated particles to form macroporous monoliths. The particles were first modified with a thin polymer shell of a functional monomer 2-(2-bromopropionyloxy) ethyl acrylate, BPOEA (or copolymer with styrene), which also contained a terminal atom transfer radical polymerization (ATRP) moiety. Surfactant free emulsion polymerization was carried out to generate polystyrene seed particles as well as the shell around them. Due to the colloidal unstability of BPOEA polymer chains, stable particles were formed only in presence of excess molar amount of styrene (styrene to BPOEA mole ratio of 3:1) or seed particles. Collapse of the BPOEA polymer chains on the seed particles was also enhanced by the addition of salt in the shell forming monomer batch, which did not allow the formation of stable secondary particles. The surface morphology of the particles was affected both by the kinetic collapse of the BPOEA chains on surface of the particles and subsequent polymerization as well as efficient stirring of the contents. The emulsifier free particles could not be gelated by the addition of salt and were destabilized by shear. The resulting aggregates were stable and porous which allowed simultaneous grafting of PNIPAAM polymer from the surface as well as imparted dimensional stability to the structure during the grafting process. It was also required to optimize the extent of grafting as the excess grafting could reduce the porosity of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jordan R, Ulman A, Kang JF, Rafailovich MH, Sokolov J (1999) J Am Chem Soc 121:1016

    Article  CAS  Google Scholar 

  2. Ingall MDK, Honeyman CH, Mercure JV, Bianconi PA, Kunz RR (1999) J Am Chem Soc 121:3607

    Article  CAS  Google Scholar 

  3. Wu T, Efimenko K, Genzer J (2001) Macromolecules 34:684

    Article  CAS  Google Scholar 

  4. Zhao B, Brittain WJ (2000) Macromolecules 33:8813

    Article  CAS  Google Scholar 

  5. Kim J, Bruening ML, Baker GL (2000) J Am Chem Soc 122:7616

    Article  CAS  Google Scholar 

  6. Sun T, Wang G, Feng L, Liu B, Ma Y, Jiang L et al (2004) Angew Chem Int Ed 43:357

    Article  CAS  Google Scholar 

  7. Xiong L, Liang H, Wang R, Chen L (2011) J Polym Res 18:1017

    Article  CAS  Google Scholar 

  8. Wang W, Tang J, Jia Z, Li X, Xiao Z (2012) J Polym Res 19:9804

    Article  Google Scholar 

  9. Zhang F, Lei X, Su Z, Zhang H (2008) J Polym Res 15:319

    Article  CAS  Google Scholar 

  10. You YZ, Hong CY, Pan CY, Wang PH (2004) Adv Mater 16:1953

    Article  CAS  Google Scholar 

  11. D’Agosto F, Charreyre M-T, Pichot C, Gilbert RG (2003) J Polym Sci A 41:1188

    Article  Google Scholar 

  12. Wang XS, Jackson RA, Armes SP (2000) Macromolecules 33:255

    Article  CAS  Google Scholar 

  13. Nishikawa T, Ando T, Kamigaito M, Sawamoto M (1997) Macromolecules 30:2244

    Article  CAS  Google Scholar 

  14. Coca S, Jasieczek C, Beers KL, Matyajaszewski K (1998) J Polym Sci A 36:1417

    Article  CAS  Google Scholar 

  15. Gaynor SG, Qiu J, Matyajaszewski K (1998) Macromolecules 31:5951

    Article  CAS  Google Scholar 

  16. Mittal V, Matsko NB, Butte A, Morbidelli M (2007) Eur Polym J 43:4868

    Article  CAS  Google Scholar 

  17. Lahann J, Mitragotri S, Tran T, Kaido H, Sundram J, Choi IS et al (2003) Science 299:371

    Article  CAS  Google Scholar 

  18. Yoshioka H, Mikami M, Nakai T, Mori Y (1994) Polym Adv Technol 6:418

    Article  Google Scholar 

  19. Ringsdorf H, Sackmann E, Simon J, Winnik FM (1993) Biochim Biophys Acta 1153:335

    Article  CAS  Google Scholar 

  20. Bae YH, Okano T, Kim SW (1990) J Polym Sci B 28:923

    Article  CAS  Google Scholar 

  21. Heskins M, Guillet JE (1968) J Macromol Sci Chem A2:1441

    Google Scholar 

  22. Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y et al (1995) Nature 374:240

    Article  CAS  Google Scholar 

  23. Gao J, Wu C (1997) Macromolecules 30:6873

    Article  CAS  Google Scholar 

  24. Marti N, Quattrini F, Butte A, Morbidelli M (2005) Macromol Mater Eng 290:221

    Article  CAS  Google Scholar 

  25. Mittal V, Matsko NB, Butte A, Morbidelli M (2008) Macromol React Eng 2:215

    Article  CAS  Google Scholar 

  26. Mittal V, Matsko NB, Butte A, Morbidelli M (2008) Macromol Mater Eng 293:491

    Article  CAS  Google Scholar 

  27. Matyajaszewski K, Gaynor SG, Kulfan A, Podwika M (1997) Macromolecules 30:5192

    Article  Google Scholar 

  28. Mittal V, Matsko NB, Butte A, Morbidelli M (2007) Polymer 48:2806

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The experimental work was partially carried out at ETH Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, V., Matsko, N.B. Surface functionalized polymer particles and thereby generation of PNIPAAM grafted monoliths by shear aggregation and ATRP. J Polym Res 19, 25 (2012). https://doi.org/10.1007/s10965-012-0025-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0025-0

Keywords

Navigation