Skip to main content
Log in

Poly(p-phenylene vilnylene)/zeolite Y composite as a ketone vapors sensor: effect of alkaline cation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work is an attempt to improve the selectivity and sensitivity response of zeolite Y towards 3 different types of ketone vapors (acetone, MEK and MIBK) which are known to be toxic and flammable substances. The effects of cation type, cation concentration, ketone vapor type, and cyclic interval were investigated. Three different cations were exchanged in zeolite Y at 50 % mole: NaY, 50KNaY, 50MgNaY and 50CaNaY for the zeolite Y at a fixed Si/Al ratio of 5.1. 50KNaY sample exhibits the highest electrical conductivity sensitivity. This arises from the electrostatic interaction between the cation and the zeolite framework, which affects the adsorption properties of zeolite. The dPPV was mixed with 80KNaY matrix at 10 % v/v and was exposed to 3 different ketone vapors. The highest electrical conductivity sensitivity belongs to the acetone exposure, whereas the MIBK exposure shows the lowest value, as a result of the smaller acetone size. The sensitivity of the composite is higher than that of pure zeolite Y by an order magnitude. For the cyclic interval, the electrical conductivity response decreases with increasing number of the interval due to the interaction between the active site and ketone vapors. The response of samples is irreversible as evidenced by FTIR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Heeger AJ, Diaz-Gracia MA (1998) Semiconducting polymers as a material for photonic device. Curr Opin Solid State Mater Sci 3:16–22

    Article  CAS  Google Scholar 

  2. Jung YS, Jung W, Tuller HL, Ross CA (2008) Nanowire conductive polymer gas sensor patterned using self assembled block copolymer lithography. Nano Lett 8:3777–3780

    Google Scholar 

  3. Vijaya JJ, Kenedy LJ, Sekaran G, Bayhan M, William M (2008) Preparation and VOC gas sensing properties of Sr(II)-added copper aluminate spinel composites. Sensors Actuators B Chem 134:604–612

    Article  Google Scholar 

  4. Gao JF, Yan DX, Huang HD, Zeng XB, Zhang WQ, Li ZM (2011) Tunable positive liquid coefficient of an anisotropically conductive carbon nanotube-polymer composite. J Polym Res 18:2239–2243

    Article  CAS  Google Scholar 

  5. Tang L, Li Y, Xu K, Hou X, Lv Y (2008) Sensitive and selective acetone sensor based on its cataluminescence from Nano-La2O3 surface. Sensors Actuators B Chem 132:243–249

    Article  Google Scholar 

  6. Mori M, Nishimura H, Itagaki Y, Sadaoka Y (2009) Potentiometric VOC detection in air using 8YSZ-based oxygen sensor modified with SmFeO3 catalytic layer. Sensors Actuators B Chem 142:141–146

    Article  Google Scholar 

  7. Montserral V, Joaquin C, Albert C, Albert C, Ramon MJ, Jesus S (2007) Gas detection with SnO2 sensors modified by zeolite films. Sensors Actuators B Chem 124:99–110

    Article  Google Scholar 

  8. Benvenho ARV, Li RWC, Gruber J (2009) Polymeric electronic gas sensor for determining alcohol content in automotive fules. Sensors Actuators B Chem 136:173–176

    Article  Google Scholar 

  9. Li RWC, Ventura L, Gruber J, Kawano Y, Carvalho LRF (2008) A selective conductive polymer–beasd sensor for volatile halogenated organic compounds (VHOC). Sensors Actuators B Chem 131:646–651

    Article  Google Scholar 

  10. Ruangchuay L, Sirivat A, Schwank J (2004) Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms. Synth Met 140:15–21

    Article  CAS  Google Scholar 

  11. Ruangchuay L, Sirivat A, Schwank J (2004) Selective conductivity response of polypyrrole-based sensor on flammable chemicals. React Funct Polym 6:11–22

    Article  Google Scholar 

  12. Ruangchuay L, Sirivat A, Schwank J (2008) Polypyroole and its composites with 3A zeolite and polyamide 6 as sensors for four chemicals in lacquer thinner. React Funct Polym 68:1646–1651

    Article  Google Scholar 

  13. Thongchai N, Kunanuruksapong R, Niamlang S, Wannatong L, Sirivat A, Wongkasenjit S (2009) Interactions between CO and poly(p-phenylene vinylene) as induced by ion-exchanged zeolites. Mater 2:2259–2275

    Article  CAS  Google Scholar 

  14. Jalkane T, Tuura J, Makila E, Salonen J (2010) Electro-optical porous silicon gas sensor with enhance selectivity. Sensors Actuators B Chem 147:100–104

    Article  Google Scholar 

  15. Chang CJ, Lin CK, Chen CC, Chen YC, Kuo EH (2011) Gas sensor with porous three dimensional framework using TiO2/Polymer double shell hollow microsphere. Thin Solid Films 520:1546–1553

    Article  CAS  Google Scholar 

  16. Hung ST, Chang CJ, Hsu CH, Chu BH, Lo CF, Hsu CC, Pearton SJ, Holzworth MR (2012) Sn02 functionalized AlGaN/GaNhigh electron mobility transistor for hydrogen sensing application. Int J Hydrogen Energy 37:13783–13788

    Article  CAS  Google Scholar 

  17. Chang JC, Hung ST, Lin CK, Chen CY, Kuo EH (2010) Selective growth of ZnO nanorods for gas sensors using ink-jet printing and hydrothermal processes. Thin Solid Films 519:1693–1698

    Article  CAS  Google Scholar 

  18. Yang P, Ye X, Lau C, Liu X, Lu J (2007) Design of efficient zeolite materials for n-Hexane. Anal Chem 79:1425–1432

    Article  CAS  Google Scholar 

  19. Varsani P, Afonja A, Williams DE, Parkin IP, Binions R (2011) Zeolite-modified WO3 gas sensors-enhanced detection of NO2. Sensors Actuators B Chem 160:475–482

    Article  CAS  Google Scholar 

  20. Yimlamai I, Niamlang S, Chanthaanont P, Kunanuruksapong R, Changkhamchom S, Sirivat A (2011) Electrical conductivity response and sensitivity of ZSM-5, Y and mordernite zeolite towards ethanol vapor. Ion 17:607–615

    Article  CAS  Google Scholar 

  21. Li X, Dutta PK (2010) Interaction of dimethylmethylphosphonate with zeolite Y: impedance-based sensor for detecting nerve agent stimulus. J Phys Chem C 114:7986–7994

    Article  CAS  Google Scholar 

  22. Soontornworajit B, Wannatong L, Hiamtup P, Niamlang S, Chotpattananont D, Sirivat A, Schwank J (2007) Induced interaction between polypyrrole and SO2 via molecularsieve 13X. Mater Sci Eng B 15:78–86

    Article  Google Scholar 

  23. Kamonsawas J, Sirivat A, Niamlang S, Hormnirun P, Prissanaroon-Ouijai W (2010) Electrical conductivity response of poly (phenylene vinylene)/zeolite composites exposed to ammonium nitrate. Sens 10:5590–5603

    Article  CAS  Google Scholar 

  24. Thuwachaosoan K, Chottananont D, Sirivat A, Rujiravanit R, Schwank JW (2007) Electrical conductivity responses and interactions of poly(3-thiopheneacetic acid)/zeolites L, modernite, beta and H2. Mater Sci Eng B 140:23–30

    Article  Google Scholar 

  25. Ahlskog M, Reghu M, Noguchi T, Ohnishi T (1997) Doping and conductivity studies on poly (p-phenylene vinylene). Synth Met 89:11–15

    Article  CAS  Google Scholar 

  26. Wessling RA, Zimmerman RG (1968) Polyelectrolytes from bis-sulfonium salts. U.S. Patent 3:401

    Google Scholar 

  27. McKeen JC, Davis ME (2009) Conductivity of Mo-and divalent cation in the microporous zincosilicate VPI9. J Phys Chem C 113:9870–9877

    Article  CAS  Google Scholar 

  28. Scott MA, Katehleen AC, Dutta PK (2003) Handbook of zeolite science and technology. Marcel Dekker, New York

    Google Scholar 

  29. Florian J, Kubelkova L (1994) Proton transfer between H-Zeolite and adsorbed acetone or acetonitrile: quantum chemical and FTIR study. J Phy Chem 98:8734–8741

    Article  CAS  Google Scholar 

  30. Panov AG, Fripiat JJ (1998) An infared study of acetone and mesityl oxide adsorption on acid catalyst. Langmuir 14:3788–3796

    Article  CAS  Google Scholar 

  31. Biaglow AI, Gorte RJ, David W (1993) Molecular motions and 13C chemical shift anisotropy of acetone adsorbed inH-ZSM-5 zeolite. J Phys Chem 97:7135–7137

    Article  CAS  Google Scholar 

  32. Martins AVG, Berlier G, Bisio C, Coluccia S, Pastore HO, Marchese L (2008) Quantification of bronsed sites in microporous catalysts by a combined FTIR and NH3-TPD study. J Phys Chem C 112:7120–7139

    Article  Google Scholar 

  33. Fameth WE, Gorte RJ (1995) Methods for characterizing zeolite acidicity. Chem Rev 95:615–635

    Article  Google Scholar 

  34. Jian HZH, Ying W, Yuan C, Xiao SW (1998) Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY. J Chem Soc 94:1163–1169

    Google Scholar 

  35. Boekfa B, Pantu P, Prosbt M, Limtrakul J (2010) Adsorption and tautomerization reaction of acetone on acidic zeolites: the confinement effect in different types of zeolites. J Phys Chem C 114:15061–15067

    Article  CAS  Google Scholar 

  36. Hoost TE, Laframboise KA, Otto K (1996) Infrared study of acetone and nitrogen oxides on Cu-ZSM-5. Catal Lett 37:153–156

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial supports from the Conductive and Electroactive Polymers Research Unit of Chulalongkorn University, the Thailand Research Fund (TRF-BRG, TRF-RTA, PHD/0026/2553), and the Royal Thai Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuvat Sirivat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamonsawas, J., Sirivat, A. & Hormnirun, P. Poly(p-phenylene vilnylene)/zeolite Y composite as a ketone vapors sensor: effect of alkaline cation. J Polym Res 19, 20 (2012). https://doi.org/10.1007/s10965-012-0020-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0020-5

Keywords

Navigation