Skip to main content
Log in

Titanium-biphenoxide catalysts for ethylene polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Titanium (IV) complexes containing sterically bulky ligands such as 2, 2′- methylenebis (4-methyl-6-tert butyl phenol) (MBTP) were synthesized by stoichiometric reaction between Ti(IV)alkoxide or halide and the biphenol. These catalyst precursors formulated as [Ti(O^O)RR′] were characterized by physicochemical and spectroscopic methods. The newly prepared Titanium biphenoxides were found to be active in polymerization of ethylene at high temperatures and pressures in combination with ethylaluminum sesquichloride (Et3Al2Cl3) as co-catalyst. The linear polyethylene obtained by this route exhibit low-molecular weights, are highly crystalline and display narrow polydispersities. The physical properties of polymers thus obtained closely resemble specialty PE waxes that are industrially important for surface coating, ink formulations and mar resistance applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 4

Similar content being viewed by others

References

  1. McGuinness DS (2011) Chem Rev 111:2321

    Article  CAS  Google Scholar 

  2. Dixon JT, Green MJ, Hess FM, Morgan DH (2004) J Organomet Chem 689:3641

    Article  CAS  Google Scholar 

  3. Wass DF (2007) Dalton Trans 816

  4. Deckers PJW, Hessen B, Teuben JH (2001) Angew Chem Int Ed 40:2516

    Article  CAS  Google Scholar 

  5. Carter A, Cohen SA, Cooley NA, Murphy A, Scutt J, Wass DF (2002) Chem Commun 858

  6. Bollmann A, Blann K, Dixon JT, Hess FM, Killian E, Maumela H, McGuinness DS, Morgan DH, Neveling A, Otto S, Overett M, Slawin AMZ, Wasserscheid P, Kuhlmann S (2004) J Am Chem Soc 126:14712

    Article  CAS  Google Scholar 

  7. Andes C, Harkins SB, Murtuza S, Oyler K, Sen A (2001) J Am Chem Soc 123:7423

    Article  CAS  Google Scholar 

  8. Tomov AK, Chirinos JJ, Long RJ, Gibson VC, Elsegood MRJ (2006) J Am Chem Soc 128:7704

    Article  CAS  Google Scholar 

  9. Tomov AK, Gibson VC, Britovsek GJP, Long RJ, van Meurs M, Jones DJ, Tellmann KP, Chirinos JJ (2009) Organometallics 28:7033

    Article  CAS  Google Scholar 

  10. Matsui S, Tohi Y, Mitani M, Saito J, Makio H, Tanaka H, Nitabaru M, Nakano T, Fujita T (1999) Chem Lett 28:1065

    Article  Google Scholar 

  11. Matsukawa N, Matsui S, Mitani M, Saito J, Tsuru K, Kashiwa N, Fujita T (2001) J Mol Catal A 169:99

    Article  CAS  Google Scholar 

  12. Zohuri G, Sandaroos R, Ahmadjo S (2012) J Polym Res 19:1

    Article  Google Scholar 

  13. Small BL, Brookhart M, Bennett AMA (1998) J Am Chem Soc 120:4049

    Article  CAS  Google Scholar 

  14. Damavandi S, Galland G-B, Zohuri G, Sandaroos R (2011) J Polym Res 18:1059

    Article  CAS  Google Scholar 

  15. Gibson VC, Spitzmesser KS (2003) Chem Rev 103:283

    Article  CAS  Google Scholar 

  16. van der Linden A, Schaverien CJ, Meijboom CG, Orpen AG (1995) J Am Chem Soc 117:3008

    Article  Google Scholar 

  17. Imanishi Y, Naga N (2001) Prog Polym Sci 26:1147

    Article  CAS  Google Scholar 

  18. Tjaden EB, Swenson DC, Jordon RF, Petersen JL (1995) Organometallics 14:371

    Article  CAS  Google Scholar 

  19. Sobota P, Przybylak K, Utko J, Jerzykiewicz LB, Pombeiro AJL, Da Silva M, Szczegot K (2001) Chem Eur J 7:951

    Article  CAS  Google Scholar 

  20. Nakayama Y, Watanabe K, Ueyama N, Nakamura A, Harada A, Okuda J (2000) Organometallics 19:2498

    Article  CAS  Google Scholar 

  21. Manivannan R, Sundararajan G (2002) Macromolecules 35:7883

    Article  CAS  Google Scholar 

  22. Tembe GL, Ravindranathan M (1991) Ind Eng Chem Res 30:2247

    Article  CAS  Google Scholar 

  23. Tembe GL, Pillai SM, Satish S, Ravindranathan M (2000) U.S. Patent 6013850

  24. Terada M, Matsumoto Y, Nakamura Y, Mikami K (1999) Inorg Chim Acta 296:267

    Article  CAS  Google Scholar 

  25. Eilerts NW, Heppert JA (1995) Polyhedron 14:3255

    Article  CAS  Google Scholar 

  26. Gigant K, Rammal A, Henry M (2001) J Am Chem Soc 123:11632

    Article  CAS  Google Scholar 

  27. Boyle TJ, Barnes TL, Heppert JA, Morales L, Takusagawa F (1992) Organometallics 11:1112

    Article  CAS  Google Scholar 

  28. Balsells J, Davis TJ, Carroll P, Walsh PJ (2002) J Am Chem Soc 124:10336

    Article  CAS  Google Scholar 

  29. Corden JP, Errington W, Moore P, Partridge MG, Wallbridge MGH (2004) Dalton Trans 1846

  30. Elowe PR, McCann C, Pringle PG, Spitzmesser SK, Bercaw JE (2006) Organometallics 25:5255

    Article  CAS  Google Scholar 

  31. Kishor R, Sudhakar P, Sarma KR, Patel V, Sharma S, Parikh PA (2011) J Appl Polym Sci 122:2646

    Article  CAS  Google Scholar 

  32. The commercial samples employed in this work, MPP 635 is a micronized, high melt point, crystalline form of polyethylene which was supplied by M/s Micro Powders, Inc. USA. The product has T m of 125 °C, d (25 °C) 0.96 and max. particle size = 31 microns. These and other grades of polyethylene waxes have been designed to increase the abrasion resistance and anti-blocking characteristics in flexographic inks as well as industrial paints and coatings. More details at www.micropowders.com

  33. Keren E, Sundararajan G (2007) J Polym Sci A Polym Chem 45:3599

    Article  CAS  Google Scholar 

  34. Białek M (2010) J Polym Sci A Polym Chem 48:3209

    Article  Google Scholar 

  35. Kaji A, Akimoto Y, Murano A (1991) J Polym Sci A Polym Chem 29:1987

    Article  CAS  Google Scholar 

  36. Li Y, Wang L, Gao H, Zhu F, Wu Q (2006) Appl Organomet Chem 20:436

    Article  CAS  Google Scholar 

  37. Aitola E, Hakala K, Fagerholm HB, Leskela M, Repo T (2008) J Polym Sci A Polym Chem 46:373

    Article  CAS  Google Scholar 

  38. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Meddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Stromberg S, White AJP, Williams DJ (1999) J Am Chem Soc 121:8728

    Article  CAS  Google Scholar 

  39. Moyer PH (1965) J Polym Sci A 3:199

    CAS  Google Scholar 

  40. Mole T, Jeffery EA (1972) Organoaluminum compounds. Elsevier, New York

    Google Scholar 

  41. Froese RDJ, Musaev DG, Matsubara T, Morokuma K (1999) Organometallics 18:373

    Article  CAS  Google Scholar 

  42. Sernetz FG, Mulhaupt R, Fokken S, Okuda J (1997) Macromolecules 30:1562

    Article  CAS  Google Scholar 

  43. Watenpaugh K, Caughlan CN (1966) Inorg Chem 5:1782

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (AMM) gratefully acknowledges the management of Reliance Industries Limited for use of its technical facility and the Head, Department of Applied Chemistry, S. V. National Institute of Technology, Surat for supporting this work. The authors also thank the Regional Sophisticated Instrumentation Centre, IIT Mumbai and Central Drug Research Lab., Lucknow for NMR and FAB mass spectral analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gopal Tembe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, A., Tembe, G., Umare, P. et al. Titanium-biphenoxide catalysts for ethylene polymerization. J Polym Res 19, 17 (2012). https://doi.org/10.1007/s10965-012-0017-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0017-0

Keywords

Navigation