Skip to main content
Log in

Synthesis and rheological properties of hydrophobically modified poly(vinyl alcohol)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel series of water-soluble hydrophobically modified poly(vinyl alcohol) (HMPVA) with various hydrophobe contents was prepared by grafting poly(vinyl alcohol) (PVA) using 1-dodecanol and toluene-2,4-diisocyanate as hydrophobic monomer and coupling agent, respectively. The chemical structure of HMPVA was analyzed by Fourier Transform Infrared Spectrometer (FTIR) and 1H NMR. Rheological properties of the aqueous solutions also confirmed the incorporation of hydrophobic groups into PVA. In dilute concentration regime, HMPVAs exhibited lower intrinsic viscosity than PVA, suggesting that HMPVA molecules were more shrunken. While the aqueous solution viscosity was enhanced due to hydrophobic modification at a high concentration, and HMPVAs with higher hydrophobe contents exhibited lager values of apparent viscosities. Over a frequency range of 1 to102 rad/s, the dynamic storage modulus of PVA solution was smaller than the dynamic loss modulus whereas the dynamic storage modulus of HMPVAs solutions was greater than the dynamic loss modulus, indicating the evolution of viscoelastic solid properties in HMPVAs solutions. The yield stress of PVA was nearly zero whereas that of HMPVAs represented positive values, implying that networks were present in HMPVAs solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 4
Fig. 6
Scheme 5
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Panmai S, Robert K, Homme P, Peiffer DG (1999) Colloids Surf, A Physicochem Eng Asp 147:3

    Article  CAS  Google Scholar 

  2. Zhang Y, Zhu PC, Edgren D (2010) J Polym Res 17:725

    Article  CAS  Google Scholar 

  3. Yahya GO, Asrof Ali SK, Al-Naafa MA, Hamad EZ (1995) J Appl Polym Sci 57:343

    Article  CAS  Google Scholar 

  4. Marstokk O, Roots J (1999) Polym Bull 42:527

    Article  CAS  Google Scholar 

  5. Shedge AS, Wadgdonkar PP, Lele AK, Badiger MV (2010) J Polym Sci Polym Phys 48:1054

    Article  CAS  Google Scholar 

  6. Yahya GO, Asrof Ali SK, Hamad EZ (1996) Polymer 37:1183

    Article  CAS  Google Scholar 

  7. Shaikh S, Asrof Ali SK, Hamad EZ, Al-Nafaa M, Al-Jarallah A, Abu-Sharkh B (1998) J Appl Polym Sci 70:2499

    Article  CAS  Google Scholar 

  8. Ye L, Li Q, Huang RH (2006) J Appl Polym Sci 101:2953

    Article  CAS  Google Scholar 

  9. Kogon JC (1959) J Org Chem 24:438

    Article  CAS  Google Scholar 

  10. Grepinet B, Pla F, Hobbes PH, Swaels PH, Monge TH (2000) J Appl Polym Sci 75:705

    Article  CAS  Google Scholar 

  11. Grepinet B, Pla F, Hobbes PH, Monge TH, Swaels PH (2001) J Appl Polym Sci 81:3149

    Article  CAS  Google Scholar 

  12. Krol P, Wojturska J (2003) J Appl Polym Sci 88:327

    Article  CAS  Google Scholar 

  13. Stagg HE (1964) Analyst 71:557

    Article  Google Scholar 

  14. Sumi M, Chokki Y, Nakai Y, Nakabayashi M, Kanzawa T (1964) Macromol Chem Phys 78:146

    Article  CAS  Google Scholar 

  15. Gouveia LM, Paillet S, Khoukh A, Grassl B, Muller AJ (2008) Colloids Surf, A Physicochem Eng Asp 322:211

    Article  CAS  Google Scholar 

  16. Feng YJ, Billon L, Grassl B, Khoukh A, Francois J (2001) Polymer 43:2055

    Article  Google Scholar 

  17. Feng YJ, Billon L, Grassl B, Bastiat G, Borisov O, Francois J (2005) Polymer 46:9283

    Article  CAS  Google Scholar 

  18. Yang XY, Shen YD, Li PZ (2010) J Polym Res 17:601

    Article  CAS  Google Scholar 

  19. Hill A, Candau F, Selb J (1993) Macromolecules 26:4521

    Article  CAS  Google Scholar 

  20. Kaczmarski JP, Glass JE (1993) Macromolecules 26:5149

    Article  CAS  Google Scholar 

  21. Tiu C, Nicolae G, Tam KC (1996) J Polym Res 3:201

    Article  CAS  Google Scholar 

  22. Song SI, Kim BC (2004) Polymer 45:2381

    Article  CAS  Google Scholar 

  23. Han CD, John MS (1986) J Appl Polym Sci 32:3809

    Article  Google Scholar 

  24. Casson N (1959) A flow equation for pigment-oil suspensions of printing ink type in rheology of disperse systems. In: Mills CC (ed). Pergamon, London

  25. Hong SM, Kim BC, Hwang SS, Kim KU (1993) Polym Eng Sci 33:630

    Article  CAS  Google Scholar 

  26. Lyoo WS, Lee SJ, Kim JH, Noh SK, Ji BC, Kim BC (2004) J Appl Polym Sci 93:41

    Article  CAS  Google Scholar 

  27. Wissburn KF, Griffin AC (1982) J Polym Sci Polym Phys Ed 20:1835

    Article  Google Scholar 

  28. Lyoo WS, Seo IS, Ji BC, Kim JH, Kim SS, Ghim HD, Kim BC, Lee J (2003) J Appl Polym Sci 88:1858

    Article  CAS  Google Scholar 

  29. Lyoo WS, Yeum JH, Kwon OW, Shin DS, Han SS, Kim BC, Jeon HY, Noh SK (2006) J Appl Polym Sci 102:3934

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangsu Huang or Jing Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Q., Huang, G., Zheng, J. et al. Synthesis and rheological properties of hydrophobically modified poly(vinyl alcohol). J Polym Res 19, 6 (2012). https://doi.org/10.1007/s10965-012-0006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-012-0006-3

Keywords

Navigation