Skip to main content
Log in

Thermorheological analysis of blend of high- and low-density polyethylenes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The effect of temperature on dynamic viscoelastic properties of high density polyethylene and low density polyethylene blends with different weight fractions was investigated in the molten state by means of small amplitude oscillatory shear rheometry. It was found that the blends at various compositions do follow well the time-temperature superposition principle and show thermorheologically simple behavior. This behavior is attributed to both similarity in glass-transition temperature of the constituents and phase stability in the blends at various temperatures. The latter was suggested via coincidence of G′-G′′ plots and δ-G* plots at different temperatures. That was furthur supported using G′ vs. temperature curves which showed no breakdown in the linear relation. Horizontal shift factors, which reflect temperature dependence of relaxation times, obtained to draw G′ and G′′ master curves, followed an Arrhenius equation with temperature. Analysis of terminal relaxation times of components revealed that terminal dynamics of components is similar at limited particular temperatures but different at others. Moreover, depending to test temperature, dynamics of a given component in the blend may be faster or slower than in the pure state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu C, Wang J, He J (2002) Polymer 43:3811–3818

    Article  CAS  Google Scholar 

  2. Ho K, Kale L, Montgomery S (2002) J Appl Polym Sci 85:1408–1418

    Article  CAS  Google Scholar 

  3. Hussein IA, Williams MC (2004) Polym Eng Sci 44:660–672

    Article  CAS  Google Scholar 

  4. Fang Y, Carreaue PJ, Lafleur PG (2005) Polym Eng Sci 45:1254–1269

    Article  CAS  Google Scholar 

  5. Schipp C, Hill MJ, Barham PJ, Clock VM, Higgins JS, Oiarzabal L (1996) Polymer 37:2291–2297

    Article  CAS  Google Scholar 

  6. Agamalian M, Alamo RG, Kim MH, Londono JD, Mandelkern L, Wignal GD (1999) Macromolecules 32:3093–3096

    Article  CAS  Google Scholar 

  7. Mieda N, Yamaguchi M (2007) Adv Polymer Tech 26:173–181

    Article  CAS  Google Scholar 

  8. Chen Y, Wu W, Wang J, Jiang H, Gao Y (In press 2011) J Polym Res

  9. Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  10. Nesarikar AR (1995) Macromolecules 28:7202–7207

    Article  CAS  Google Scholar 

  11. Borah JS, Chaki TK (In press 2011) J Polym Res

  12. Ansari M, Hatzikiriakos SG, Sukhadia AM, Rohlfing DC (2011) Rheol Acta 50:17–27

    Article  CAS  Google Scholar 

  13. Doelder JD, Das C, Read DJ (In press 2011) Rheol Acta

  14. Vittorias I, Lilge D, Baroso V, Wilhelm M (In press 2011) Rheol Acta

  15. Kim JK, Lee HH, Son HW, Han HD (1998) Macromolecules 31:8566–8578

    Article  CAS  Google Scholar 

  16. Madbouly SA, Ougizawa T (2002) J Macromol Sci Phys B 41:255–269

    Article  Google Scholar 

  17. Du M, Gong J, Zheng Q (2004) Polymer 45:6725–6730

    Article  CAS  Google Scholar 

  18. Chopra D, Kontopoulou M, Vlassopoulos D, Hatzikiriakos SG (2002) Rheol Acta 41:10–24

    Article  CAS  Google Scholar 

  19. Siriprumpoonthum M, Mieda N, Nobukawa S, Yamaguchi M (In press 2011) J Polym Res

  20. Ku T-H, Lin C-A (2005) J Polym Res 12:23–29

    Article  CAS  Google Scholar 

  21. Zarraga A, Pena JJ, Munoz ME, Santamaria A (2000) J Polymer Sci, Part B: Polymer Phys 38:469–477

    Article  CAS  Google Scholar 

  22. Haley JC, Lodge TP, He Y, Ediger MD (2003) Macromolecules 36:6142–6151

    Article  CAS  Google Scholar 

  23. Pathak JA, Colby RH, Kamath SY, Kumar SK, Stadler R (1998) Macromolecules 31:8988–8997

    Article  CAS  Google Scholar 

  24. Mavridis H, Shroff RN (1992) Polym Eng Sci 32:1778–1791

    Article  CAS  Google Scholar 

  25. Vega JF, Expósito MT, Martínez-Salazar J, Lobón-Poo M, Osío Barcina J, García Martínez A, López M (2011) Rheol Acta 50:207–220

    Article  CAS  Google Scholar 

  26. Qiang Z, Miao D, Bibo Y, Gang W (2001) Polymer 42:5743–5747

    Article  Google Scholar 

  27. Han CD, Baek DH, Kim JK, Ogawa T, Sakamoto N, Hashimoto T (1995) Macromolecules 28:5043–5062

    Article  CAS  Google Scholar 

  28. Dumoulin MM, Utracki LA, Carreau PJ (1991) In: Two-phase polymer systems. Hanser, New York

  29. Wisniewski C, Marin G, Mong Ph (1985) Eur Polym J 21:479–484

    Article  CAS  Google Scholar 

  30. Wagner MH, Laun HM (1978) Rheol Acta 17:138–148

    Article  CAS  Google Scholar 

  31. Raju VR, Rachapudt H, Graessley WW (1979) J Polymer Sci Polymer Phys 17:1223–1235

    Article  CAS  Google Scholar 

  32. Graessley WW, Raju VR (1984) J Polym Sci Polym Symp 71:77–93

    Article  CAS  Google Scholar 

  33. Carella JM, Gotro JT, Graessley WW (1986) Macromolecules 19:659–667

    Article  CAS  Google Scholar 

  34. Haley JC, Lodge TP (2004) Colloid Polymer Sci 282:793–801

    Article  CAS  Google Scholar 

  35. Colby RH (1989) Polymer 30:1275–1278

    Article  CAS  Google Scholar 

  36. Kumar SK, Colby RH, Anastasiadis SH, Fytas G (1996) J Chem Phys 105:3777–3788

    Article  CAS  Google Scholar 

  37. Sharma J, Clarke N (2004) J Phys Chem B 108:13220–13230

    Article  CAS  Google Scholar 

  38. Bousmina M, Lavoie A, Riedl B (2002) Macromolecules 35:6274–6283

    Article  CAS  Google Scholar 

  39. Han CD, Yang HH (1987) J Appl Polym Sci 33:1199–1220

    Article  CAS  Google Scholar 

  40. Han CD, Chuang HK (1985) J Appl Polym Sci 30:4431–4454

    Article  CAS  Google Scholar 

  41. Chuang H, Han CD (1984) J Appl Polym Sci 29:2205–2229

    Article  CAS  Google Scholar 

  42. Choi HJ, Kim J, Jhon MS (1999) Polymer 40:4135–4138

    Article  CAS  Google Scholar 

  43. Plazek DJ (1980) Polym J 12:43–53

    Article  CAS  Google Scholar 

  44. Roland CM, Santangelo PG (2002) J Non-Cryst Solids 307–310:835–841

    Article  Google Scholar 

  45. Utracki LA, Sammut P (1992) Polymer Netw Blend 2:23–26

    CAS  Google Scholar 

  46. Utracki LA (1988) Polym Eng Sci 28:1401–1404

    Article  CAS  Google Scholar 

  47. Van Gurp M, Palmen J (1998) Rheol Bull 67:5–8

    Google Scholar 

  48. Perez R, Rojo E, Fernandez M, Leal V, Lafuente P, Santamaria A (2005) Polymer 46:8045–8053

    Article  CAS  Google Scholar 

  49. Trinkle S, Friedrich C (2000) ACS/PMSE 82:121

    CAS  Google Scholar 

  50. Trinkle S, Friedrich C (2001) Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  51. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Scientific Publications, New York

    Google Scholar 

  52. Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) J Polymer Sci Polymer Phys 46:1669–1683

    Article  CAS  Google Scholar 

  53. Wagner MH, Kheirandish S, Yamaguchi M (2004) Rheol Acta 44:198–218

    Article  CAS  Google Scholar 

  54. Delgadillo-Velazquez O, Hatzikiriakos SG, Sentmanat M (2008) Rheol Acta 47:19–31

    Article  CAS  Google Scholar 

  55. Ajji A, Choplin L (1991) Macromolecules 24:5221–5223

    Article  CAS  Google Scholar 

  56. Madbouly SA, Ougizawa T (2004) Macromol Chem Phys 205:1222–1230

    Article  CAS  Google Scholar 

  57. Niu Y, Wang Z (2006) Macromolecules 39:4175–4183

    Article  CAS  Google Scholar 

  58. Huang Y, Jiang S, Li G, Chen D (2005) Acta Materialia 53:5117–5124

    Article  CAS  Google Scholar 

  59. Kapnistos M, Hinrichs A, Vlassopoulos D, Anastasiadis SH, Stammer A, Wolf BA (1996) Macromolecules 29:7155–7163

    Article  CAS  Google Scholar 

  60. Lobbrecht A, Friedrich C, Sernetz FG, Mu Lhaupt R (1997) J Appl Polym Sci 65:209–215

    Article  CAS  Google Scholar 

  61. Stadler FJ (2011) Express Polymer Lett 5:327–341

    Article  CAS  Google Scholar 

  62. Nanadan B, Kandpal LD, Mathur GN (2004) J Polymer Sci Polymer Phys 42:1548–1563

    Article  Google Scholar 

  63. Pearson DS (1987) Rubber Chem Tech 60:439–496

    Article  CAS  Google Scholar 

  64. Shams Es-Haghi S, Yousefi AA, Oromiehie A (2007) J Polymer Sci Polymer Phys 45:2860–2870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Yousefi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M., Yousefi, A.A. & Ehsani, M. Thermorheological analysis of blend of high- and low-density polyethylenes. J Polym Res 19, 9798 (2012). https://doi.org/10.1007/s10965-011-9798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9798-9

Keywords

Navigation