Skip to main content
Log in

Crystallization kinetics of ethylene homopolymers: a new perspective from residual catalyst and resin molecular weight

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two Ziegler-Natta and one metallocene supported catalysts were prepared that were used to synthesize ethylene homopolymers with different molecular weights. The influence of varying residual catalyst types and molecular weights on the isothermal crystallization kinetics of these polymers was studied using DSC and Avrami model to gain better understanding. The MetCat HomoPE, unlike the Z-N HomoPEs, followed the Avrami model during the entire crystallization. The increase in molecular weights did not affect (i) the decreasing trend of 1/t 1/2 (bulk crystallization rate) and K (crystallization rate constant) with the increase in T c (crystallization temperature), and (ii) the increasing trend of K with the increase in %crystallinity. However, combined with the varying residual catalysts, it differently varied the rate of change of 1/t 1/2 and K; and decreased T c . K and 1/t 1/2 turned out to be asymptotically related up to 1/t 1/2  ≈ 0.73 min−1. The residual catalyst type more predominantly affected the crystallization facileness than the molecular weight. Therefore, the Z-N 1 residual catalyst acted as heterogeneous nuclei. In Z-N HomoPE 1 and Z-N HomoPE 2, n ranged from 2.2 to 3.4, and 2.6 to 3.0, respectively as a function of T c . In MetCat HomoPE, it remained constant at 2. Therefore, the MetCat residual catalyst impinged the expected spherulitic crystal growth to a two dimensional one. All these findings were explained considering how the molecular level residual catalysts, with their characteristic surface chemistries and structures, influenced the prevailing heterogeneous nucleation process, and the aliased interaction of G (nuclei growth rate) and Ñ (nucleation rate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Webb SW, Weist EL, Chiovetta MG, Laurence RL, Conner WC (1991) The Can J Chem Eng 69:665

    Google Scholar 

  2. Grof Z, Kosek J, Marek M (2005) AICHE J 51:2048

    Article  CAS  Google Scholar 

  3. Zheng X, Smit M, Chadwick JC, Loos J (2005) Macromolecules 38:4673

    Article  CAS  Google Scholar 

  4. Martino AD, Broyer JP, Spitz R, Weickert G, McKenna TFL (2005) Macromol Rapid Commun 26:215

    Article  Google Scholar 

  5. Silva FM, Broyer JP, Novat C, Lima EL, Pinto JC, McKenna TFL (2005) Macromol React Eng 16:1846

    Google Scholar 

  6. Martino AD, Weickert G, Sidoroff F, McKenna TFL (2007) Macromol React Eng 1:338

    Article  Google Scholar 

  7. Atiqullah M, Akhtar MN, Moman A, Abu-Raqabah AH, Palackal SJ, Al-Muallem HA, Hamed OM (2007) Appl Catal A: General 320:134

    Article  CAS  Google Scholar 

  8. Atiqullah M, Moman A, Akhtar MN, Al-Muallem HA, Abu-Raqabah AH, Neaz A (2007) J Appl Polym Sci 106:3149

    Article  CAS  Google Scholar 

  9. Dompazis G, Kanellopoulos V, Chatzidoukas C, Kiparissides C (2005) Proceedings, 3rd European Conference on the Reaction Engineering of Polyolefins June 20–24

  10. Lee I-M, Gauthier WJ, Ball JM, Iyengar B, Collins S (1992) Organometallics 11:2115–2122

    Article  CAS  Google Scholar 

  11. Rappé AK, Skiff WM, Casewit CJ (2000) Chem Rev 100:1435–1456

    Google Scholar 

  12. Phillips PJ, Lambert WS (1990) Macromolecules 23:2075

    Article  CAS  Google Scholar 

  13. Lambert WS, Phillips PJ (1994) Macromolecules 37:3585

    Google Scholar 

  14. Lambert WS, Phillips PJ (1996) Polymer 37:3585

    Article  CAS  Google Scholar 

  15. Wunderlich B (1976) Crystal nucleation, growth, and annealing. Macromolecular physics 2. Academic Press, New York

    Google Scholar 

  16. Avrami J (1939) J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  17. Avrami J (1940) J Chem Phys 8:212

    Article  CAS  Google Scholar 

  18. Avrami J (1941) J Chem Phys 9:177

    Article  CAS  Google Scholar 

  19. Gafeski A, Bartczak Z, Pracella M (1984) Polymer 25:1323–1326

    Article  Google Scholar 

  20. Joshi M, Butola BS (2007) J Appl Polym Sci 105:978

    Article  CAS  Google Scholar 

  21. Supaphol P, Spruiell JE (2002) J Appl Polym Sci 86:1009

    Article  CAS  Google Scholar 

  22. Atiqullah M, Akhtar MN, Faiz M, Moman A, Abu-Raqabah AH, Khan JH, Wazeer MI (2006) Surf Interf Anal 38:1319

    Article  CAS  Google Scholar 

  23. Mink RI, Nowlin TE (1995) High activity polyethylene catalysts prepared with alkoxysilane reagents. US Patent 5470812

  24. Chamla C, Erick D (1991) Catalysts for olefin polymerization EP 0453088 (A1)

  25. Perkin Elmer (1996) Atomic absorption spectroscopy: analytical methods: manual number 0303-1052 Release D Connecticut: Norwalk The Perkin Elmer Corporation

  26. ASTM C 114−00 (2000) American Society for Testing Materials

  27. Islam MA, Hussein I, Atiqullah M (2007) Eur Polym J 43:599

    Google Scholar 

  28. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) J Polym Testing 26:222

    Google Scholar 

  29. Acar I, Durmuş A, Özgümüş S (2007) J Appl Polym Sci 106:4180

    Article  CAS  Google Scholar 

  30. Vega JF, Martinez-Salazar J, Trujillo M, Arnal MI, Muller AJ, Bredeau S, Ph Dubois (2009) Macromolecules 42:4719

    Google Scholar 

  31. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  32. Run M, Wu S, Zhang D, Wu G (2005) Polymer 46:5308

    Article  CAS  Google Scholar 

  33. Dahl IM, Halvorsen S, Slotfeldt-Ellinggsen (1986) J Mol Cat 35:55

  34. Pakkanen TT, Vahasarja E, Pakkanen TA, Iiskola E, Sormunen P (1990) J Catal 121:248

    Article  CAS  Google Scholar 

  35. Hussain I, Atiqullah M, Fazal A, Alam K, Hossaen A (2010) Polym Degrad Stab 95:2289

    Article  CAS  Google Scholar 

  36. Chirinos-Padrón AJ, Hernández PH, Suárez FA (1988) Polym Degrad Stab 20:237

    Google Scholar 

  37. Moss S, Zweifel H (1989) Polym Degrad Stab 25:217

    Article  CAS  Google Scholar 

  38. Hoáng EM, Allen NS, Liauw CM, Fontán E, Lafuente P (2006) Polym Degrad Stab 91:1356

    Article  Google Scholar 

  39. Allen NS, Fatinikun KO (1983) Eur Polym J 19:551

    Article  CAS  Google Scholar 

  40. Scheirs J, Bigger SW, Billingham NC (1992) J Polym Sci Part A: Polym Chem 30:1873

    Article  CAS  Google Scholar 

  41. Kong Y, Yi J, Dou X, Liu W, Huang Q, Gao K, Yang W (2010) Polymer 51:3859

    Article  CAS  Google Scholar 

  42. Crabtree JR, Grimsby FN, Nummelin AJ, Sketchley JM (1973) J Appl Polym Sci 17:95

    Article  Google Scholar 

  43. Maglio G, Martuscelli E, Palumbo R, Soldati I (1976) Polymer 17:185

    Article  CAS  Google Scholar 

  44. López LC, Wilkes GL (1988) Polymer 29:106

    Article  Google Scholar 

  45. Cheng SZD, Wunderlich B (1986) J Polym Sci Part B Polym Phys 24:1755

    Article  CAS  Google Scholar 

  46. Fatou JG, Marco C, Mandelkern L (1990) Polymer 31:1685

    Article  CAS  Google Scholar 

  47. Banks W, Hay JN, Sharples A, Thompson G (1964) Polymer 5:163

    Article  CAS  Google Scholar 

  48. Zhang C, Wu HF, Ma CA, Sumita M (2006) Mat Letters 60:1054

    Article  CAS  Google Scholar 

  49. Banks W, Gordon M, Roe RJ, Sharples A (1963) Polymer 4:61

    Article  CAS  Google Scholar 

  50. Suzuki T, Kovacs A (1970) Polym J 1:82

    Article  CAS  Google Scholar 

  51. Boyd RH (1984) Macromolecules 17:903

    Article  CAS  Google Scholar 

  52. Tseng HT, Phillips PJ (1985) Macromolecules 18:1565

    Article  CAS  Google Scholar 

  53. Davidson T, Wunderlich B (1969) J Polym Sci Polym Phys 7:377

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Saudi Arabian Ministry of Higher Education (MOHE) for sponsoring this study through the Center of Research Excellence in Petroleum Refining and Petrochemicals (CoRE-PRP), which was established in April 2007 at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia. The support from the Center of Refining & Petrochemicals (CRP) of KFUPM Research Institute; and the technical assistance of Mr. M. Córdova Universidad Simón Bolívar, Venezuela; Dr. Pilar del Hierro, Polymer Char, Spain are gratefully acknowledged. The useful discussion with Prof. A. J. Müller, Universidad Simón Bolívar, Venezuela is acknowledged, too. The authors also thank PQ Corporation, Philadelphia, USA for donating the silica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Atiqullah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atiqullah, M., Hussain, I., Al-Harbi, A. et al. Crystallization kinetics of ethylene homopolymers: a new perspective from residual catalyst and resin molecular weight. J Polym Res 19, 9797 (2012). https://doi.org/10.1007/s10965-011-9797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9797-x

Keywords

Navigation