Skip to main content
Log in

Simulation of reversible chain transfer catalyzed polymerization (RTCP): effect of different iodide based catalysts

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Monte Carlo kinetic simulation method was performed to study the reversible chain transfer catalyzed polymerization (RTCP) of styrene in 80°C. The effect of different iodide based catalysts (AI) was investigated on RTCP systems by simulating the chain length distribution, the depletion rate of polymerization ingredients, average molecular weights and the monomer conversion. In RTCP systems a narrow distribution was obtained compared to iodide-mediated polymerization. Superior reversible chain transfer reaction constants (ka and kda) led to a more uniform chain length distribution and a faster PDI decrement. In each RTCP system kda/ka ratio, designates the concentration of A* by dictating the dominant side of exchange equilibriums which specifies the number of cross-termination reactions. Addition of cross-termination reactions to the iodide-mediated polymerization system decreases the number of combination reactions leading to lower average molecular weights. Higher kda/ka ratios also consequences in faster catalyst depletions and lessen monomer conversions. On the other hand, PhE-I was found to deplete rapidly in RTCP systems, changing the nonlinear increase of the number average molecular weight to a linear pattern. The Monte Carlo simulation results were in a fine agreement with experimental data which were obtained from different RTCP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goto A, Tsujii Y, Fukuda T (2008) Polymer 49:5177–5185

    Article  CAS  Google Scholar 

  2. Matyjaszewski K, Davis TP (2002) Handbook of radical polymerization. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  3. Braunecker WA, Matyjaszewski K (2007) Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  4. Greszta D, Mardare D, Matyjaszewski K (1994) Macromolecules 27:638–644

    Article  CAS  Google Scholar 

  5. Goto A, Fukuda T (2004) Prog Polym Sci 29:329–385

    Article  CAS  Google Scholar 

  6. Fischer H (2001) Chem Rev 101:3581–3610

    Article  CAS  Google Scholar 

  7. Tang W, Tsarevsky NV, Matyjaszewski K (2006) J Am Chem Soc 128:1598–1604

    Article  CAS  Google Scholar 

  8. Tang W, Fukuda T, Matyjaszewski K (2006) Macromolecules 39:4332–4337

    Article  CAS  Google Scholar 

  9. Litvinenko G, Müller AHE (1997) Macromolecules 30:1253–1266

    Article  CAS  Google Scholar 

  10. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Macromolecules 31:5559–5562

    Article  CAS  Google Scholar 

  11. Moad G, Rizzardo E, Thang SH (2005) Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  12. Destarac M, Taton D, Zard SZ, Saleh T, Yvan S (2003) ACS Symp Ser 536–550

  13. Goto A, Zushi H, Kwak Y, Fukuda T (2006) ACS Symp Ser 595–603

  14. Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T (2007) J Am Chem Soc 129:13347–13354

    Article  CAS  Google Scholar 

  15. Goto A, Hirai N, Wakada T, Nagasawa K, Tsujii Y, Fukuda T (2008) Macromolecules 41:6261–6264

    Article  CAS  Google Scholar 

  16. Goto A, Hirai N, Wakada T, Nagasawa K, Tsujii Y, Fukuda T (2009) ACS Symp Ser 159–168

  17. Vana P, Goto A (2010) Macromol Theory Simul 19:24–35

    CAS  Google Scholar 

  18. Goto A, Hirai N, Tsujii Y, Fukuda T (2008) Macromol Symp 261:18–22

    Article  CAS  Google Scholar 

  19. Goto A, Wakada T, Fukuda T, Tsujii Y (2010) Macromol Chem Phys 211:594–600

    Article  CAS  Google Scholar 

  20. Goto A, Zushi H, Hirai N, Wakada T, Kwak Y, Fukuda T (2007) Macromol Symp 248:126–131

    Article  CAS  Google Scholar 

  21. Lange J, Rieumont J, Davidenko N, Sastre R (1998) Polymer 39:2537–2542

    Article  CAS  Google Scholar 

  22. Soares JBP (2004) Macromol Mater Eng 289:70–87

    Article  CAS  Google Scholar 

  23. Lange J, Davidenko N, Rieumont J, Sastre R (2004) Macromol Theory Simul 13:641–654

    Article  CAS  Google Scholar 

  24. Rivero P, Herrera R (2011) J Polym Res 18:519–526

    Google Scholar 

  25. Mahjub A, Salami-Kalajahi M, Haddadi-Asl V, Roghani-Mamaghani H (2011) Iran Polym J 20(3):205–2011

    CAS  Google Scholar 

  26. Salami-Kalajahi M, Najafi M, Haddadi-Asl V (2009) Int J Chem Kinet 41:45–56

    Article  CAS  Google Scholar 

  27. Bruns W, Motoc I, O’Driscoll KF (1981) Monte Carlo applications in polymer science. Springer-Verlag, Berlin

    Book  Google Scholar 

  28. Najafi M, Roghani-Mamaqani H, Salami-Kalajahi M, Haddadi-Asl V (2011) J Polym Res 18:1539–1555

    Google Scholar 

  29. Al-Harthi M, Soares JBP, Simon LC (2006) Macromol Mater Eng 291:993–1003

    Article  CAS  Google Scholar 

  30. Matsumoto M, Nishimura T (1998) ACM Trans Model Comput Simul 8:3–30

    Article  Google Scholar 

  31. Goto A, Ohno K, Fukuda T (1998) Macromolecules 31:2809–2814

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Torabi Angaji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahjub, A., Mohammadi, H., Salami-Kalajahi, M. et al. Simulation of reversible chain transfer catalyzed polymerization (RTCP): effect of different iodide based catalysts. J Polym Res 19, 9740 (2012). https://doi.org/10.1007/s10965-011-9740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9740-1

Keywords

Navigation