Skip to main content
Log in

A thermosensitive supramolecular aggregation from linear telechelic polydimethylsiloxane with self-assembly units

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new thermosensitive material, polydimethylsiloxane supramolecular aggregation (PDMS-SMA-1), was prepared by coupling the N-pyridin-2-yl-succinamic acid with aminopropyl-terminated polydimethylsiloxane via amidated reaction. Its structure was confirmed by FT-IR, 1H NMR and 13C NMR. And the FT-IR spectra, molecular dynamics simulations and density functional theory calculations supported the existence of intermolecular hydrogen bonding and π-π stacking in supramolecular aggregation and obtained its possible self-assembly structure. A combination of DSC measurements, oscillatory shear experiments, and AFM measurements was carried out to further investigate the nature of PDMS-SMA-1. The results indicated that hydrogen bonding and π-π stacking combined with phase segregation were important for the preparation of thermosensitive materials. Moreover, in order to investigate the effect of molecular weight on the thermal sensitivity and morphology of supramolecular aggregation, PDMS-SMA-2 with higher molecular weight was also synthesized. In contrast to PDMS-SMA-1, it had similar thermal properties but different morphology. All the characteristics of supramolecular aggregation suggested a much wider range of hydrogen bonding and π-π stacking motifs which could be applied in intelligent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. De Greef TFA, Smulders MMJ, Wolffs M, Schenning APHJ, Sijbesma RP, Meijer EW (2009) Chem Rev 109:5687–5754

    Article  Google Scholar 

  2. Suzuki M, Hanabusa K (2010) Chem Soc Rev 39:455–463

    Article  CAS  Google Scholar 

  3. Kiyonaka S, Sugiyasu K, Shinkai S, Hamachi I (2002) J Am Chem Soc 124:10954–10955

    Article  CAS  Google Scholar 

  4. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Adv Mater 12:874–878

    Article  CAS  Google Scholar 

  5. Weng W, Li Z, Jamieson AM, Rowan SJ (2008) Macromolecules 42:236–246

    Article  Google Scholar 

  6. Krische M, Lehn J-M (2000) Molecular self-assembly organic versus inorganic approaches. Springer Berlin, Heidelberg

    Google Scholar 

  7. Sijbesma RP, Meijer EW (1999) Curr Opin Colloid Interface Sci 4:24–32

    Article  CAS  Google Scholar 

  8. Han JT, Lee DH, Ryu CY, Cho K (2004) J Am Chem Soc 126:4796–4797

    Article  CAS  Google Scholar 

  9. Suzuki M, Yanagida R, Setoguchi C, Shirai H, Hanabusa K (2008) J Polym Sci Part A Polym Chem 46:353–361

    Article  CAS  Google Scholar 

  10. Koh JK, Koh JH, Ahn SH, Kim JH, Kang YS (2010) Electrochim Acta 55:2567–2574

    Article  CAS  Google Scholar 

  11. Woodward PJ, Hermida Merino D, Greenland BW, Hamley IW, Light Z, Slark AT, Hayes W (2010) Macromolecules 43:2512

    Article  CAS  Google Scholar 

  12. Kim WH, Bihari B, Moody R, Kodali NB, Kumar J, Tripathy SK (1995) Macromolecules 28:642

    Article  CAS  Google Scholar 

  13. Sukwattanasinitt M, Wang X, Li L, Jiang X, Kumar J, Tripathy SK, Sandman DJ (1998) Chem Mater 10:27

    Article  CAS  Google Scholar 

  14. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, Lowe JKL, Meijer EW (1997) Science 278:1601

    Article  CAS  Google Scholar 

  15. Sherrington DC, Taskinen KA (2001) Chem Soc Rev 30:83

    Article  CAS  Google Scholar 

  16. Sivakova S, Bohnsack DA, Mackay ME, Suwanmala P, Rowan SJ (2005) J Am Chem Soc 127:18202

    Article  CAS  Google Scholar 

  17. Lay HC, Spencer MJS, Evans EJ, Yarovsky I (2003) J Phys Chem B 107:9681

    Article  CAS  Google Scholar 

  18. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) J Phys Chem B 106:3046

    Article  CAS  Google Scholar 

  19. Kremer K, Muller-Plathe F (2002) Mol Simulat 28:729

    Article  CAS  Google Scholar 

  20. Tamai Y, Tanaka H, Nakanishi K (1995) Fluid Phase Equilib 104:363

    Article  CAS  Google Scholar 

  21. Kolotova NV, Dolzhenko AV, VO Koz’ minykh, Kotegov VP, Godina AT (1999) Pharm Chem J 33:635

    Article  CAS  Google Scholar 

  22. Kolotova NV, Koz’minykh VO, Dolzhenko AV, Koz’minykh EN, Kotegov VP, Godina AT, Syropyatov BY, Novoselova GN (2001) Pharm Chem J 35:146

    Article  CAS  Google Scholar 

  23. Lee JY, Painter PC, Coleman MM (1988) Macromolecules 21:954

    Article  CAS  Google Scholar 

  24. Yu LJ (1993) Liq Cryst 14:1303

    Article  CAS  Google Scholar 

  25. Lambert JB, Shurvell HF, Lightner DA, Cooks RG (1998) Organic structural spectroscopy. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Becke AD (1992) J Chem Phys 96:2155

    Article  CAS  Google Scholar 

  27. Becke AD (1992) J Chem Phys 97:9173

    Article  CAS  Google Scholar 

  28. Becke AD (1992) J Chem Phys 98:5648

    Article  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  30. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  31. Nava AD, Thakur M, Tonelli AE (1990) Macromolecules 23:3055

    Article  CAS  Google Scholar 

  32. Wood BR, Hodge P, Semlyen JA (1993) Polymer 34:3052

    Article  CAS  Google Scholar 

  33. Osada Y, Khokhlov A (2002) Polymer gel and networks. Dekker, Basel

    Google Scholar 

  34. Gang L, Basil DF (2010) Macromol Chem Phys 211:321

    Article  Google Scholar 

  35. Aleksandra J, Tomasz H, Piotr W, Jacek U (2005) Macromol Chem Phys 206:59

    Article  Google Scholar 

  36. Della Valle G, Buleon A, Carreau PJ, Lavoie PA, Vergnes B (1998) J Rheol 42:507

    Article  CAS  Google Scholar 

  37. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2004) Carbohydr Polym 58:139

    Article  CAS  Google Scholar 

  38. Helena MW, Maria RS, Fany R, Fernando W, Gabriel PS (2005) Polym Int 54:814

    Article  Google Scholar 

  39. Smits ALM, Kruiskamp PH, van Soest JJG, Vliegenthart JFG (2003) Carbohydr Polym 53:409

    Article  CAS  Google Scholar 

  40. Botterhuis NE, van Beek DJM, van Gemert ML, Bosman AW, Sijbesma RP (2008) J Polym Sci Part A Polym Chem 46:3877

    Article  CAS  Google Scholar 

  41. Winter HH, Chambon F (1986) J Rheol 30:367–382

    Article  CAS  Google Scholar 

  42. Winter HH (1987) Pol Eng Sci 27:1698–1702

    Article  CAS  Google Scholar 

  43. Chambon F, Winter HH (1987) J Rheol 31:683–697

    Article  CAS  Google Scholar 

  44. Winter IA, HH HT (1992) Macromolecules 25:2422–2428

    Article  Google Scholar 

  45. McLean RS, Sauer BB (1997) Macromolecules 30:8314

    Article  CAS  Google Scholar 

  46. Flory PJ (1949) J Chem Phys 17:223

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the Key Natural Science Foundation of Shandong Province of China (Grant No ZR2009BZ006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyu Feng.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 625 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Du, L., Zhang, J. et al. A thermosensitive supramolecular aggregation from linear telechelic polydimethylsiloxane with self-assembly units. J Polym Res 18, 1635–1643 (2011). https://doi.org/10.1007/s10965-011-9568-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9568-8

Keywords

Navigation