Skip to main content
Log in

Synthesis and characterization of well-defined poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO2 nanocomposite via ATRP technique

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO2 [(PCMSt-g-P4VP)/TiO2] nanocomposite was synthesized by atom transfer radical polymerization (ATRP) technique. The synthesis strategy involved three steps. Firstly, the nano-TiO2 was modified by 3-(trimethoxysilyl) propylmethacrylate (MPS). Secondly, the modified nanoparticles were dispersed in 4-chloromethyl styrene monomers and subsequently polymerized by a free-radical in situ polymerization reaction to yield PCMSt/TiO2 nanocomposite. Finally, poly (4-vinylpyridine) was grafted from PCMSt/TiO2 macroinitiator via ATRP technique with the catalysts of 2,2′-bipyridine (Bpy) and Cu(I)Br in toluene as the solvent. TGA results indicated that no polymers adsorbed noncovalently onto the surface of TiO2 nanoparticles. Also FT-IR spectra and TEM images investigation provided direct and clear evidence for the presence of PCMSt and (PCMSt-g-P4VP) shell on nano-TiO2 core particles. Ultraviolet–visible spectroscopy (UV-Vis) investigated that these nanocomposites have improved optical properties potentially acting as visually transparent UV filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CRP:

Controlled/living radical polymerization

ATRP:

Atom transfer radical polymerization

PCMSt:

Poly (4-chloromethyl styrene)

P4VP:

Poly (4-vinylpyridine)

AIBN:

2,2′-Azobis (isobutyronitrile)

Bpy:

2,2′-Bipyridine

TEM:

Transmission electron microscopy

Tg :

Glass transition temperature

DSC:

Differential scanning calorimetry

TGA:

Thermogravimetric analysis

BET:

Specific surface area

MPS:

3-(Trimethoxysilyl) propylmethacrylate

References

  1. Caruso F (2001) Adv Mater 13:11

    Article  CAS  Google Scholar 

  2. Celik M, Onal M (2007) J Polym Res 14(4):313

    Article  CAS  Google Scholar 

  3. Reddy MK, Manorama VS, Reddy RA (2003) Mater Chem Phys 78:239

    Article  Google Scholar 

  4. Nussbanmer JR, Caseri R, Smith P, Tervoort T (2003) Macromol Mater Eng 288:44

    Article  Google Scholar 

  5. Zhang Q, Gao L, Guo J (2000) Appl Catal B 26:207

    Article  CAS  Google Scholar 

  6. Acierno D, Filippone G, Romeo G, Russo P (2007) Macromol Symp 247:59

    Article  CAS  Google Scholar 

  7. Hojjati B, Sui R, Charpentier PA (2007) Polymer 48:5850

    Article  CAS  Google Scholar 

  8. Wang Q, Xia H, Zhang C (2001) J Appl Polym Sci 80:1478

    Article  CAS  Google Scholar 

  9. Juangvanich N, Manritz KA (1998) J Appl Polym Sci 67:1799

    Article  CAS  Google Scholar 

  10. Lantelme B, Dumon M, Mai C, Pascanlt JP (1996) J Non-Cryst Solids 194:63

    Article  CAS  Google Scholar 

  11. Li Y, Yu J, Guo Z (2003) Polym Int 52:981

    Article  CAS  Google Scholar 

  12. Chang J, Kim S (2004) Polymer 45:919

    Article  CAS  Google Scholar 

  13. Shen L, Du Q, Wang H, Zhong W, Yang Y (2004) Polym Int 53:1153

    Article  CAS  Google Scholar 

  14. Bartholome C, Beyou E, Bourgeat-Lami E, Cassaganau P, Chaumont P, David L, Zydowicz N (2005) Polymer 46:9965

    Article  CAS  Google Scholar 

  15. Luna-Xavier J, Guyot A, Bourgeat-Lami E (2002) J Colloid Interface Sci 250:82

    Article  CAS  Google Scholar 

  16. Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Zydowicz N (2003) Macromolecules 36:7946

    Article  CAS  Google Scholar 

  17. Caris CHM, Kuijpers RPM, Van-Herk AM, German AL (1990) Macromol Chem Macromol Symp 35:535

    Article  Google Scholar 

  18. Caris CHM, Van-Elven LPM, Van-Herk AM, German AL (1989) Br Polym J 21:133

    Article  CAS  Google Scholar 

  19. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38:4419

    Article  CAS  Google Scholar 

  20. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38:4431

    Article  CAS  Google Scholar 

  21. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) J Polym Sci Part A: Polym Chem 38:4441

    Article  CAS  Google Scholar 

  22. Borisch J, Pilkenton S, Miller ML, Raftery D, Francisco JS (2004) J Phys Chem B 108:5640

    Article  CAS  Google Scholar 

  23. Shoaeifar P, Abbasian M, Entezami A (2007) J Polym Res 14:45

    Article  CAS  Google Scholar 

  24. Jaymand M (2010) Polymer (Korea) 34(6):553

    CAS  Google Scholar 

  25. Kato M, Kamigatio M, Sawamoto M, Higashimura T (1995) Macromolecules 28:1721

    Article  CAS  Google Scholar 

  26. Arita T, Beuermann S, Buback M, Vana P (2005) Macromol Mater Eng 290:283

    Article  CAS  Google Scholar 

  27. Wang JS, Matyjaszewski K (1995) Macromolecules 28:7901

    Article  CAS  Google Scholar 

  28. Shipp DA, Wang JL, Matjaszewski K (1998) Macromolecules 31:8005

    Article  CAS  Google Scholar 

  29. Liu S, Sen A (2000) Macromolecules 33:5106

    Article  CAS  Google Scholar 

  30. Von-Werne T, Patten TE (1999) J Am Chem Soc 121:7409

    Article  CAS  Google Scholar 

  31. Ma GH, Fukutomi T (1991) J Appl Polym Sci 43:1451

    Article  Google Scholar 

  32. Li D, He Q, Cui Y, Li J (2007) Chem Mater 19:412

    Article  CAS  Google Scholar 

  33. Sahiner N (2009) Turk J Chem 33:23

    CAS  Google Scholar 

  34. Xiao Q, Zhang X, Yi J, Wang X, Zhang H (2008) Iran Polym J 17(10):781

    CAS  Google Scholar 

  35. Zoelen WV, Bondzic S, Landaluce TF, Brondijk J, Loos K, Schouten AJ, Rudolf P, Brinke GT (2009) Polymer 50:3617

    Article  Google Scholar 

  36. Creutz S, Teyssie P, Jerome R (1997) Macromolecules 30:1

    Article  CAS  Google Scholar 

  37. Nugay N, Kucukyavuz Z, Kucukyavuz S (1993) Polym Int 32:93

    Article  Google Scholar 

  38. Convertine AJ, Sumerlin BS, Thomas DB, Lowe AB, Mc-Cormick CL (2003) Macromolecules 36:4679

    Article  CAS  Google Scholar 

  39. Yuan JJ, Ma R, Gao Q, Wang YF, Cheng SY, Feng LX, Fan ZQ, Jiang L (2003) J Appl Polym Sci 1017:89

    Google Scholar 

  40. Fischer A, Brembilla A, Lochon P (1999) Macromolecules 32:6069

    Article  CAS  Google Scholar 

  41. Chen ZJ, Cai J, Jiang XQ, Yang CZ (2002) J Appl Polym Sci 86:2687

    Article  CAS  Google Scholar 

  42. Philipse AP, Vrij A (1989) J Colloid Interface Sci 128:121

    Article  CAS  Google Scholar 

  43. Chiang PC, Whang WT (2003) Polymer 44:2249

    Article  CAS  Google Scholar 

  44. Yoshida M, Lal M, Deepark-Kumar N, Prasad PN (1997) J Mater Sci 32:4047

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I express my gratitude to the Bonyade Melli Nokhbeghan Institute and Payame Noor University for supporting this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Jaymand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaymand, M. Synthesis and characterization of well-defined poly (4-chloromethyl styrene-g-4-vinylpyridine)/TiO2 nanocomposite via ATRP technique. J Polym Res 18, 1617–1624 (2011). https://doi.org/10.1007/s10965-011-9566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9566-x

Keywords

Navigation