Advertisement

Journal of Polymer Research

, Volume 18, Issue 6, pp 1575–1586 | Cite as

Synthesis and characterization of new polyamides and polyimides containing dioxypyrimidine moiety in the main chain with bulky imidazole pendent group: solubility, thermal and photophysical properties

  • Seyed Mojtaba Amini Nasab
  • Mousa GhaemyEmail author
Original Paper

Abstract

A new symmetrical diamine monomer containing dioxypyrimidine and two diaryl imidazole bulky pendent group was synthesized by the nucleophilic substitution reaction of 4,6 dihydroxy pyrimidine with the synthesized 2-(2-chloro-5-nitrophenyl)-4,5-diphenyl-1H-imidazole (I). A series of novel fluorescent imidazole-containing polyamides (PAs) with inherent viscosities of 0.52–0.78 dL/g was prepared by direct polycondensation of the diamine with various dicarboxylic acids. These PAs were readily soluble in many organic solvents and could be solution-cast into tough and flexible films. The PAs exhibited glass transition temperatures (Tg)s between 202 and 260 °C, and 10% weight loss temperatures in the range of 345–470 °C in air. In addition, three novel polyimides (PIs) with inherent viscosities of 0.38–0.56 dL/g were prepared by addition reaction of the diamine with commercially available tetracarboxylic dianhydrides and subsequent chemical imidization. The PIs exhibited good solubility in polar solvents such as NMP. These polymers exhibited Tgs in the range of 237–285 °C and their 10% weight-loss temperatures varied from 440 to 520 °C.

Keywords

Polycondensation Polyamides Polyimides Fluorescent Solubility Thermal properties 

References

  1. 1.
    Cassidy PE (1980) Thermally stable polymers. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Wilson D, Stenzenberger HD, Hergenrother PM (1990) Polyimides. Chapman and Hall, New YorkGoogle Scholar
  3. 3.
    Ghosh MK, Mittal KL (1996) Polyimides fundamentals and applications. Marcel Decker, New YorkGoogle Scholar
  4. 4.
    Hsiao SH, Huang TL (2004) J Polym Res 11:9–21CrossRefGoogle Scholar
  5. 5.
    Ghaemy M, Bazzar M (2010) J Appl Polym Sci 116:64–71CrossRefGoogle Scholar
  6. 6.
    Hsiao SH, Liou GS, Kung YC, Pan HY, Kuo CH (2009) Eur Polym J 45:2234–2248CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Li S, Li W, Zhang S (2007) Polymer 48:6246–6253CrossRefGoogle Scholar
  8. 8.
    Wang CY, Li G, Jiang JM (2009) Polymer 50:1709–1716CrossRefGoogle Scholar
  9. 9.
    Ghaemy M, Alizadeh R (2009) Eur Polym J 45:1681–1688CrossRefGoogle Scholar
  10. 10.
    Ghaemy M, Alizadeh R, Behmadi H (2009) Eur Polym J 45:3108–3115CrossRefGoogle Scholar
  11. 11.
    Liou GS, Hsiao SH, Huang HM, Chang CW, Yen HJ (2007) J Polym Res 14:191–199CrossRefGoogle Scholar
  12. 12.
    Li W, Li S, Zgang Q, Zhang S (2007) Macromolecules 40:8205–8211CrossRefGoogle Scholar
  13. 13.
    Wang CY, Li G, Zhao XY, Jiang JM (2009) J Polym Sci A Polym Chem 47:3309–3317CrossRefGoogle Scholar
  14. 14.
    Ghaemy M, Amini Nasab SM (2010) React Func Polym 70:306–313CrossRefGoogle Scholar
  15. 15.
    Faghihi K, Hajibeygi M, Shabanian M (2010) J Polym Res 17:379–390CrossRefGoogle Scholar
  16. 16.
    Ferrero E, Espeso JF, Campa JG, Abajo J, Lozano AE (2002) J Polym Sci A Polym Chem 40:3711–3724CrossRefGoogle Scholar
  17. 17.
    Hsiao SH, Chen WT (2003) J Polym Res 10:95–103CrossRefGoogle Scholar
  18. 18.
    Yamada M, Kusama M, Matsumoto T, Kurosaki T (1993) Macromolecules 26:4961–4963CrossRefGoogle Scholar
  19. 19.
    Kusama M, Matsumoto T, Kurosaki T (1994) Macromolecules 27:1117–1123CrossRefGoogle Scholar
  20. 20.
    Chern YT (1998) Polymer 39:4123–4127CrossRefGoogle Scholar
  21. 21.
    Liu YL, Tsai SH (2002) Polymer 43:5757–5762CrossRefGoogle Scholar
  22. 22.
    Wang CY, Li PH, Li G, Jiang JM (2009) Colloid Polym Sci 287:495–500CrossRefGoogle Scholar
  23. 23.
    Shao Y, Li Y, Zhao X, Ma T, Gong C, Yang F (2007) Eur Polym J 43:4389–4397CrossRefGoogle Scholar
  24. 24.
    Ghaemy M (2010) Amini Nasab SM, Alizadeh R. J Appl Polym Sci 116:3725–3731CrossRefGoogle Scholar
  25. 25.
    Mallakpour S, Seyedjamali H (2009) Colloid Polym Sci 287:1111–1116CrossRefGoogle Scholar
  26. 26.
    Zhao X, Wang C, Chen L, Zhu M (2009) Colloid Polym Sci 287:1331–1337CrossRefGoogle Scholar
  27. 27.
    Liou GS, Fang YK, Yen HJ (2007) J Polym Res 14:147–155CrossRefGoogle Scholar
  28. 28.
    Liaw DJ, Chang FC, Leung MK, Chou MY (2005) Macromolecules 38:4024–4029CrossRefGoogle Scholar
  29. 29.
    Mikroyannidis JA, Panayiotis D, Panayiotis VI, Spiliopoulos K (2004) Syn Met 145:87–93CrossRefGoogle Scholar
  30. 30.
    Pan Y, Tang X, Zhu L, Huang Y (2007) Eur Polym J 43:1091–1095CrossRefGoogle Scholar
  31. 31.
    Feng K, Hsub FL, Van DerVeer D, Bota K, Xiu R (2004) J Photochem Photobiol A Chem 165:223–228CrossRefGoogle Scholar
  32. 32.
    Pan Y, Tang X (2008) Eur Polym J 44:408–414CrossRefGoogle Scholar
  33. 33.
    Nakashima K, Fukuzaki Y, Nomura R, Shimoda R, Nakamura Y, Kuroda N, Akiyama S, Irgum K (1998) Dyes Pigm 38:127–136CrossRefGoogle Scholar
  34. 34.
    Fridman N, Kaftory M, Speiser S (2007) Sensors Actuators B 126:107–115CrossRefGoogle Scholar
  35. 35.
    Yamazaki N, Matsumoto M, Higashi F (1975) J Polym Sci A Polym Chem 13:1373–1380Google Scholar
  36. 36.
    San-Jose N, Gomez-Valdemoro A, Estevez P, Clemente Garcia F, Serna F, Miguel Garcia J (2008) Eur Polym J 44:3578–3587CrossRefGoogle Scholar
  37. 37.
    Hsiao S-H, Liou G-S, Kung Y-C, Yen H-J (2008) Macromolecules 41:2800–2808CrossRefGoogle Scholar
  38. 38.
    Xu S, Jin Y, Yang M, Bai F, Cao S (2006) Polym Adv Technol 17:556–561CrossRefGoogle Scholar
  39. 39.
    Yang C-P, Hsiao S-H, Wu K-L (2003) Polymer 44:7067–7078CrossRefGoogle Scholar
  40. 40.
    Liou GS, Chang CW (2008) Macromolecules 41:1667–1674CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Faculty of ChemistryUniversity of MazandaranBabolsarIran

Personalised recommendations