Skip to main content
Log in

Investigation on some physicochemical properties of guest-conjugated and -incorporated hybrid organic/inorganic linear-dendritic nanocarriers

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Benzyl alcohol, as a model compound in conjugation, and 1-(2-pyridylazo)-2-naphtol (PAN), as a lipophilic dye molecule in encapsulation, were exploited using linear-dendritic ABA amphiphilic triblock copolymers, which is known as “hybrid macromolecules”, containing silicon atoms by two methods. In the first route, benzyl alcohol was attached to the Si-Cl peripheral groups of the hybrid in different generations to synthesize host-benzyl alcohol conjugates. In the second procedure, PAN as the guest molecule was incorporated into different generations of the synthesized hybrid. Binding capacity and incorporation content (IC) of different generations of the hybrid were investigated using conventional methods such as nuclear magnetic resonance and UV–vis spectroscopy. It was observed that the IC, hydrolytic behavior and the release rate from the prepared micellar structures can be tuned by either external parameters such as pH or internal parameters such as hydrophilic/lipophilic ratio by developing generations. Dynamic light scattering and transmission electron microscopy experiments depicted diameter of the prepared nanocarriers between 100 to 250 nm. The release of guest molecules from the carriers was evaluated at pH 1, 7.4 and 10. Briefly, the prepared micelles can play a role as carrier with tunable release rate without sacrificing their micellar stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bonacucina G, Cespi M, Misici-Falzi M, Palmieri GF (2009) Colloidal soft matter as drug delivery system. J Pharm Sci 98:1–42

    Article  CAS  Google Scholar 

  2. Boyd BJ (2008) Past and future evolution in colloidal drug delivery systems. Expert Opin Drug Deliv 5:69–85

    Article  CAS  Google Scholar 

  3. Gitsv I (2008) Hybrid linear dendritic macromolecules: from synthesis to applications. J Polym Sci A Polym Chem 46:5295–5314

    Article  Google Scholar 

  4. Jansen JFGA, de Brabander-van den Berg EMM, Meijer EW (1994) Encapsulation of guest molecules into a dendritic box. Science 266:1226–1229

    Article  CAS  Google Scholar 

  5. Newkome GR, Woosley BD, He E, Moorefield CN, Güther R, Baker GR, Escamilla GH, Merrill J, Luftmann H (1996) Supramolecular chemistry of flexible dendritic-based structures employing molecular recognition. J Chem Soc Chem Commun 2737–2738

  6. Liu C, Gao C, Yan D (2006) Syergistic supramolecular encapsulation of amphiphilic hyperbranched polymers to dye. Macromolecules 39:8102–8111

    Article  CAS  Google Scholar 

  7. Newkome GR, Moorefield CN, Baker GR, Johnson AL, Behera RK (1991) Alkane cascade polymers possessing micellar topology: micellanoic acid derivatives. Angew Chem Int Ed Engl 30:1176–1178

    Article  Google Scholar 

  8. Namazi H, Adeli M (2005) Solution proprieties of dendritic triazine/poly(ethylene glycol)/dendritic triazine block copolymers. J Polym Sci A Polym Chem 43:28–41

    Article  CAS  Google Scholar 

  9. Namazi H, Adeli M (2005) Synthesis of barbell-like triblock copolymers, dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors. Polymer 46:10788–10799

    Article  CAS  Google Scholar 

  10. Moorefield CN, Newkome GR (2003) Unimolecular micelles: supramolecular use of dendritic constructs to create versatile molecular containers. C R Chim 6:715–724

    Article  CAS  Google Scholar 

  11. Mackay ME, Tuteja A, Duxbury FM, Hawker CJ, Van Horn B, Guan Z, Chen G, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743

    Article  CAS  Google Scholar 

  12. Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH (1991) Unimolecular micelles. Angew Chem Int Ed Engl 30:1178–1180

    Article  Google Scholar 

  13. Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  CAS  Google Scholar 

  14. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK (2009) Dendrimers: emerging polymers for drug-delivery systems. Eur J Pharm Sci 38:185–196

    Article  CAS  Google Scholar 

  15. Yang Z, Zhang W, Liu J, Shi W (2007) Synthesis of amphiphilic poly(ether-amide) dendrimer end capped with poly(ethylene glycol) grafts and its solubilization to salicylic acid. Colloids Surf B Biointerfaces 55:229–234

    Article  CAS  Google Scholar 

  16. Bhadra D, Bhadra S, Jain S, Jain NK (2003) A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 257:111–124

    Article  CAS  Google Scholar 

  17. Chandrasekara D, Sistlaa R, Ahmadb FJ, Kharb RK, Diwan PV (2007) The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 28:504–512

    Article  Google Scholar 

  18. Racles C, Cazacu M, Ioanid A, Vlad A (2008) Micellization of a siloxane-based segmented copolymer in organic solvents and its use as a tool for metal complex nanoparticles. Macromol Rapid Commun 29:1527–1531

    Article  CAS  Google Scholar 

  19. Kriesel JW, Tilley DT (2001) Carbosilane dendrimers as nanoscopic building blocks for hybrid organic/inorganic materials and catalyst supports. Adv Mater 13:1645–1648

    Article  CAS  Google Scholar 

  20. Zheng ML, Chen WQ, Li CF, Dong XZ, Duan XM (2007) Optical gain enhancement using a carbosiloxane dendrimerin dilute solution of rhodamine B. Chem Phys Chem 8:810–814

    Article  CAS  Google Scholar 

  21. Jung KH, Shin HK, KwonYS KC (2005) Morphology properties of self-assembled dendrimer on Au(III) using tapping mode atomic force microscopy. Colloids Surf A Physicochem Eng Asp 257–258:191–194

    Article  Google Scholar 

  22. Namazi H, Jafarirad S (2010) Hybrid organic/inorganic dendritic triblock copolymers: synthesis, nanostructure characterization and micellar behavior. J Appl Polym Sci 117:1085–1094

    Article  CAS  Google Scholar 

  23. Namazi H, Adeli M, Zarnegar Z, Jafarirad S, Dadkhah A, Shukla A (2007) Encapsulation of nanoparticles using linear-dendritic macromolecules. Colloid Polym Sci 285:1527

    Article  CAS  Google Scholar 

  24. Namazi H, Adeli M (2003) Dendrimers of citric acid and poly(ethylene glycol) as the new drug delivery agents. Eur Polym J 39:1491–1500

    Article  CAS  Google Scholar 

  25. Namazi H, Kanani A (2007) Synthesis of new prodrugs based on ß-CD as the natural compounds containing ß-lactam antibiotics. J Bioact Compat Polym 22:77–88

    Article  CAS  Google Scholar 

  26. Namazi H, Adeli M (2005) Dendrimers of citric acid and poly(ethylene glycol) as the new drug-delivery agents. Biomaterials 26:1175–1183

    Article  CAS  Google Scholar 

  27. Namazi H, Dadkhah H (2008) Surface modification of starch nanocrystals through ring-opening polymerization of ε-caprolactone and investigation of their microstructures. J Appl Polym Sci 110:2405–2412

    Article  CAS  Google Scholar 

  28. Namazi H, Dadkhah H (2010) Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym 79:731–737

    Article  CAS  Google Scholar 

  29. Lestel L, Cheradame H, Boileau S (1990) Crosslinking of polyether networks by hydrosilylation and related side reactions. Polymer 31:1154–1158

    Article  CAS  Google Scholar 

  30. Jikei M, Kakimoto MA (2001) Hyperbranched polymers: a promising new class of materials. Prog Polym Sci 26:1233–1285

    Article  CAS  Google Scholar 

  31. Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional pluronic copolymer micelles for paclitaxel delivery: synergistic effect of folate-mediated targeting and pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors greatly acknowledge the University of Tabriz for financial supports of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namazi, H., Jafarirad, S. Investigation on some physicochemical properties of guest-conjugated and -incorporated hybrid organic/inorganic linear-dendritic nanocarriers. J Polym Res 18, 1431–1440 (2011). https://doi.org/10.1007/s10965-010-9548-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9548-4

Keywords

Navigation