Skip to main content
Log in

Novel fluorinated polymers bearing phosphonated side chains: synthesis, characterization and properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new class of aryl trifluorovinyl ether monomers containing phosphonated oligo(ethylene oxide) units were designed and synthesized. Novel fluorinated polymers containing perfluorocyclobutane and phosphonic acid moieties were prepared from these monomers via the thermal cyclopolymerization and hydrolysis reaction. The structures of these monomers and polymers were characterized by nuclear magnetic resonance spectroscopy and fourier transform spectroscopy. The thermal properties of these polymers were evaluated with differential scanning calorimetry and thermo-gravimetric analysis. The 5% weight loss of these polymers was in range of 258–270 °C in nitrogen, but no glass transition temperatures were detected. The polymers showed good solubility in organic solvents such as dimethyl sulfoxide and N,N-dimethylacetamide. In addition, the basic membrane properties of the membranes such as water uptake and proton conductivity were also measured at room temperature. The membranes exhibited high water uptake (up to 44.7%) due to the high level of phosphonation content. The proton conductivities of the membranes under 100% relative humidity were in the range of 0.032–0.068 S/cm, which entitled them as candidates for proton exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steele BCH, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Ameduri B, Boutevin B (2004) Well-architectured fluoropolymers: synthesis, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  3. Kim DS, Robertson GP, Guiver MD et al (2006) J Membr Sci 281:111–120

    Article  CAS  Google Scholar 

  4. Miyatake K, Oyaizu K, Tsuchida E et al (2001) Macromolecules 34:2065–2071

    Article  CAS  Google Scholar 

  5. Xing PX, Robertson GP, Guiver MD et al (2005) Polymer 46:3257–3263

    Article  CAS  Google Scholar 

  6. Norsten TB, Guiver MD, Murphy J et al (2006) Adv Funct Mater 16:1814–1822

    Article  CAS  Google Scholar 

  7. Ghassemi H, McGrath JE, Zawodzinski TA Jr (2006) Polymer 47:4132–4139

    Article  CAS  Google Scholar 

  8. Iacono ST, Ewald D, Sankhe A et al (2007) High Perform Polym 19:581–591

    Article  CAS  Google Scholar 

  9. Kim DJ, Chang BJ, Kim JH et al (2008) J Membr Sci 325:217–222

    Article  CAS  Google Scholar 

  10. Qian GQ, Smith DW Jr, Benicewicz BC (2009) Polymer 50:3911–3916

    Article  CAS  Google Scholar 

  11. Smith DW Jr, Babb DA, Shah H et al (2000) J Fluorine Chem 104:109–117

    Article  CAS  Google Scholar 

  12. Zhu YQ, Huang YG, Meng WD et al (2006) Polymer 47:6272–6279

    Article  CAS  Google Scholar 

  13. Iacono ST, Budy SM, Jin J et al (2007) J Polym Sci. Polym Chem 45:5705–5721

    Article  CAS  Google Scholar 

  14. Harris JM (1972) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum, New York

    Google Scholar 

  15. Neugebaue D (2007) Polym Int 56:1469–1498

    Article  Google Scholar 

  16. Schuster M, Rager T, Noda A et al (2005) Fuel Cells 5:355–365

    Article  CAS  Google Scholar 

  17. Yeo WS, Min DH, Hsieh RW et al (2005) Angew Chem Int Ed 44:5480–5483

    Article  CAS  Google Scholar 

  18. Oda K, Nishizono N, Tamai Y et al (2005) Heterocycles 65:1985–1988

    Article  CAS  Google Scholar 

  19. Allcock HR, Hofmann MA, Ambler CM et al (2002) J Membr Sci 201:47–54

    Article  CAS  Google Scholar 

  20. Li JQ, Qiao JX, Smith D et al (2007) Tetrahedron Lett 48:7516–7519

    Article  CAS  Google Scholar 

  21. Ligon SC, Krawiec M, Kitaygorodskiy A et al (2003) J Fluorine Chem 123:139–146

    Article  Google Scholar 

  22. Babb DA, Ezzell BR, Clement KS et al (1993) J Polym Sci Polym Chem 31:3465–3477

    Article  CAS  Google Scholar 

  23. Huang X, Wang R, Zhao P et al (2005) Polymer 46:7590–7597

    Article  CAS  Google Scholar 

  24. Jiang DD, Yao Q, McKinney MA et al (1999) Polym Degrad Stab 63:423–434

    Article  CAS  Google Scholar 

  25. Lafitte B, Jannasch P (2007) Adv Fuel Cells 1:119–185

    Article  CAS  Google Scholar 

  26. Kennedy AP, Babb DA, Bremmer JN et al (1995) J Polym Sci Polym Chem 33:1859–1865

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciated the Doctoral Fund of Ministry of Education of China (No. 200802551014), and the Open Foundation of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. LK0804) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanqin Zhu or Chuanglong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Chen, H. & He, C. Novel fluorinated polymers bearing phosphonated side chains: synthesis, characterization and properties. J Polym Res 18, 1409–1416 (2011). https://doi.org/10.1007/s10965-010-9545-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9545-7

Keywords

Navigation