Skip to main content
Log in

Evolution of properties in ABS/PA6 blends compatibilized by fixed weight ratio SAGMA copolymer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Blends of acrylonitrile-butadiene-styrene (ABS) and Nylon 6 (PA6) incorporating styrene-acrylonitrile-glycidyl methacrylate (SAGMA) copolymer as compatibilizer have been studied across five different compositions by varying the PA6 ratio from 15 wt% to 55 wt%. The evolution of morphology from discrete dispersed PA6 particles to phase inversion to co-continuous phases effected due to the compatibilizer have been studied vis-à-vis preliminary melt flow analysis, viscoelastic behavior, physico-mechanical and thermal properties of the blends. Single point viscosity measurements during melt flow analyses are indicative of a significant increase in viscosity upon initial incorporation of PA6 followed by narrow increases with content. It is observed that while there are gradual positive modifications in physico-mechanical properties with increasing PA6 content, the most significant improvements are observed for room temperature izod impact strength and break elongation effected in the region of phase inversion on to the formation of a co-continuous phase. The low temperature impact strength at −40 °C essentially remains comparable to that of control ABS. DMTA analysis evidences partial dissolution of the blend components by the shifts of the damping peaks (Tg) of PB rich phase, SAN and PA6. Broadening of the damping peak of PB rich phase of ABS is attributed to increasing interfacial region due to PA6-g-SAGMA molecular layer at the interface. Thermal stability of the blends were not significantly affected in comparison to control ABS and PA6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Micrograph 1
Micrograph 2
Micrograph 3
Micrograph 4
Micrograph 5
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Majumdar B, Keskkula H, Paul DR (1994) Polymer 35:3164

    Article  CAS  Google Scholar 

  2. Kudva A, Keskkula H, Paul DR (2000) Polymer 41:239

    Article  CAS  Google Scholar 

  3. Kudva A, Keskkula H, Paul DR (2000) Polymer 41:335

    Article  CAS  Google Scholar 

  4. Tjong SC (2003) Mater Sci Eng R 41:1

    Article  Google Scholar 

  5. Tjong SC, Jiang W (2004) J Mater Sci 39:2737

    Article  CAS  Google Scholar 

  6. Kudva RA, Keskkula H, Paul DR (1998) Polymer 39:2447

    Article  CAS  Google Scholar 

  7. Sakellariou P, Eastmond GC, Miles IS (1991) Polymer 32:2351

    Article  CAS  Google Scholar 

  8. Heuschen J, Vion JM, Jerome R, Teyssie Ph (1990) Polymer 31:1473

    Article  CAS  Google Scholar 

  9. Plochocki AP, Dagli SS, Andrews RD (1990) Polym Eng Sci 30:741

    Article  CAS  Google Scholar 

  10. Jang SP, Kim D (2000) Polym Eng Sci 40:1635

    Article  CAS  Google Scholar 

  11. Lia SM, Chen WC, Liao YC, Chen TW, Shen HF, Shiao YK (2003) ANTEC 2286

  12. Scott CE, Macosco CW (1994) J Polym Sci Part B: Polym Phys 32:205

    Article  CAS  Google Scholar 

  13. Chen CC, White JL (1993) Polym Eng Sci 33:923

    Article  CAS  Google Scholar 

  14. Araujo EM, Hage E, Carvalho AJF (2003) J Mater Sci 38:3515

    Article  CAS  Google Scholar 

  15. Chiu HT, Hsiao YK (2004) Polym Eng Sci 44:2340

    Article  CAS  Google Scholar 

  16. Lai SM, Liao YC, Chen TW (2006) J Appl Polym Sci 100:1364

    Article  CAS  Google Scholar 

  17. Lai SM, Liao YC, Chen TW (2005) Polym Eng Sci 45:1461

    Article  CAS  Google Scholar 

  18. Chiu FC, Lai SM, Li HC, Chen CC (23rd June 2010) Online First J Polym Res

  19. Ozkoc G, Bayram G, Bayramli E (2007) J Appl Polym Sci 104:926

    Article  CAS  Google Scholar 

  20. Sun SL, Tan ZY, Xu XF, Zhou C, Ao YH, Zhang HX (2005) J Polym Sci Part B: Polym Phys 43:2170

    Article  CAS  Google Scholar 

  21. Xu XY, Sun SL, Chen ZC, Zhang HX (2008) J Appl Polym Sci 109:2482

    Article  CAS  Google Scholar 

  22. Handge UA, Sailer C, Steininger H, Weber M, Scholtyssek S, Seydewitz V (2009) J Appl Polym Sci 112:1658

    Article  CAS  Google Scholar 

  23. Araujo EM, Hage E, Carvalho AJF (2005) J Mat Sci 40(16):4239

    Article  CAS  Google Scholar 

  24. Guinault A, Sollogoub C (2009) Int J Mater Form 2(Suppl 1):701

    Article  Google Scholar 

  25. Lee PC, Kuo WF, Chang FC (1994) Polymer 35:5641

    Article  CAS  Google Scholar 

  26. Kim BK, Park SJ (1991) J Appl Polym Sci 43:357

    Article  CAS  Google Scholar 

  27. Kim BK, Lee YM, Jeong HM (1993) Polymer 34:2075

    Article  CAS  Google Scholar 

  28. Byung KK, Young ML (1993) Polymer 34:2075

    Article  Google Scholar 

  29. Qin S, Yu J, Zheng Q, He M, Zhu H (2008) Chinese J Polym Sci 26:73

    Article  CAS  Google Scholar 

  30. Kitayama N, Keskkula H, Paul DR (2000) Polymer 41:8041

    Article  CAS  Google Scholar 

  31. Kitayama N, Keskkula H, Paul DR (2000) Polymer 41:8053

    Article  CAS  Google Scholar 

  32. Kitayama N, Keskkula H, Paul DR (2001) Polymer 42:3751

    Article  CAS  Google Scholar 

  33. Chang HH, Wu JS, Chang FC (1994) J Polym Res 1:235

    Article  CAS  Google Scholar 

  34. Cook WD, Zhang T, Moad C, Deipen GV, Cser F, Fox B, Oshea M (1996) J Appl Polym Sci 62:1699

    Article  CAS  Google Scholar 

  35. Olaf M, Dirk K, Hans W, Christian F, Marc V, Holger W (2004) Polymer 45:739

    Article  Google Scholar 

  36. Majumdar B, Keskkula H, Paul DR (1994) Polymer 35:5453

    Article  CAS  Google Scholar 

  37. Jafari SH, Potschke P, Stephan M, Warth H, Alberts H (2002) Polymer 43:6985

    Article  CAS  Google Scholar 

  38. Triacca VJ, Ziaee S, Barlow JW, Keskkula H, Paul DR (1991) Polymer 32:1401

    Article  CAS  Google Scholar 

  39. Sun SL, Xu XY, Yang HD, Zhang HX (2005) Polymer 46:7632

    Article  CAS  Google Scholar 

  40. Thirtha V, Lehman R, Nosker T (2005) Polym Eng Sci 45:1187

    Article  CAS  Google Scholar 

  41. Hale WR, Pessan LA, Keskkula H, Paul DR (1999) Polymer 40:4237

    Article  CAS  Google Scholar 

  42. Kelnar I, Stephan M, Jakarisch L, Fortelny I (1999) Polym Eng Sci 39:985

    Article  CAS  Google Scholar 

  43. Wang X, Li H (2001) J Mater Sci 36:5465

    Article  CAS  Google Scholar 

  44. Mamat A, Khann TVu, Cigana P, Favis BD (1997) J Polym Sci Part B: Polym Phys 35:2583

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Department of Science and Technology, Delhi and the facilities extended by Shri Ram Institute for Industrial Research, Delhi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H., Gupta, N.K. Evolution of properties in ABS/PA6 blends compatibilized by fixed weight ratio SAGMA copolymer. J Polym Res 18, 1365–1377 (2011). https://doi.org/10.1007/s10965-010-9540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9540-z

Keywords

Navigation