Skip to main content
Log in

Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of block poly(ester-ether urethane)s, poly(PHB/PCL-PEG-PCL), based on poly(3-hydroxybutyrate) (PHB-diol), as hard segments, and poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone), (PCL-PEG-PCL) triblock copolydiol, as soft segments, were prepared using 1,6-hexamethylene diisocyanate (HDI), as non-toxic connecting agent. Polyurethanes block copolymer was synthesized from bacterial PHB and PCL-PEG-PCL blocks. The chemical structure and molecular weights of polymers prepared were characterized by FTIR, 1H NMR and GPC. The effect of chemical structure on the thermal and mechanical properties was studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and tensile testing. The DSC results revealed that poly(PHB/PCL-PEG-PCL) urethanes are semi-crystalline with two crystallizable PHB and PCL-PEG-PCL blocks. The thermal stability of the urethanes is less than neat PHB. The results of tensile testing showed that the extensibility of PHB is largely enhanced by the incorporation of PCL-PEG-PCL soft segments. Activation energy E a , as a kinetic parameter of thermal decomposition, was estimated by each of the Ozawa and Kissinger methods. Close values of activation energy were obtained by both methods. The swelling behaviour of the copolymers was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Doi Y (1990) Microbial polyester. VCH, New York

    Google Scholar 

  2. Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Rehm H-J, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol. 6. Wiley, Weinheim, pp 403–464

    Google Scholar 

  3. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    Article  CAS  Google Scholar 

  4. Nonato RV, Mantelatto PE, Rossell CEV (2001) Integrated production of biodegradable plastic, sugar and ethanol. Appl Microbiol Biotechnol 57:1–5

    Article  CAS  Google Scholar 

  5. Grassie N, Murray EJ, Holmes PA (1984) Thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 3—The reaction mechanism. Polym Degrad Stab 6:127–134

    Article  CAS  Google Scholar 

  6. Grassie N, Murray EJ, Holmes PA (1984) Thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 1—Identification and quantitative analysis of products. Polym Degrad Stab 6:47–61

    Article  CAS  Google Scholar 

  7. Grassie N, Murray EJ, Holmes PA (1984) Thermal degradation of poly(-(D)-β-hydroxybutyric acid): part 2—Changes in molecular weight. Polym Degrad Stab 6:95–103

    Article  CAS  Google Scholar 

  8. Hirt TD, Neuenschwander P, Suter UW (1996) Synthesis of degradable, biocompatible, and tough block-copolyesterurethanes. Macromol Chem Phys 197:4253–4268

    Article  CAS  Google Scholar 

  9. Lendlein A, Neuenschwander P, Suter UW (1998) Tissue-compatible multiblock copolymers for medical applications, controllable in degradation rate and mechanical properties. Macromol Chem Phys 199:2785–2796

    Article  CAS  Google Scholar 

  10. Saad GR, Lee YJ, Seliger H (2002) Synthesis and characterization of biodegradable poly(ester-urethanes) based on bacterial poly(R-3-hydroxybutyrate). J Appl Poly Sci 83:703–718

    Article  CAS  Google Scholar 

  11. Saad GR (2001) Calorimetric and dielectric study of the segmented biodegradable poly(ester-urethane)s based on bacterial poly(R-3-hydroxybutyrate). Macromol Biosci 1:387–396

    Article  CAS  Google Scholar 

  12. Saad GR, Seliger H (2004) Biodegradable copolymers based on bacterial poly(R-3-hydroxybutyrate): thermal and mechanical properties and biodegradation behaviour. Polym Degrad Stab 83:101–110

    Article  CAS  Google Scholar 

  13. Zhao Q, Cheng G, Li H, Ma X, Zhang L (2005) Synthesis and characterization of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polymer 46:10561–10567

    Article  CAS  Google Scholar 

  14. Zhao Q, Cheng G (2004) Preparation of biodegradable poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. J Mater Sci 39:3829–3831

    Article  CAS  Google Scholar 

  15. Zhao Q, Cheng G, Song C, Zeng Y, Tao J, Zhang L (2006) Crystallization behavior and biodegradation of poly(3-hydroxybutyrate) and poly(ethylene glycol) multiblock copolymers. Polym Degrad Stab 91:1240–1246

    Article  CAS  Google Scholar 

  16. Li X, Loh XJ, Wang K, He C, Li J (2005) Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Biomacromolecules 6:2740–2747

    Article  CAS  Google Scholar 

  17. Loh XJ, Tan KK, Li X, Li J (2006) The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials 27:1841–1850

    Article  CAS  Google Scholar 

  18. Loh XJ, Goh SH, Li J (2007) Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials 28:4113–4123

    Article  CAS  Google Scholar 

  19. Zhang C, Zhang N, Wen X (2007) Synthesis and characterization of biocompatible, degradable, light curable, polyurethane-based elastic hydrogels. J Biomed Mater Res 82:637–650

    Article  Google Scholar 

  20. Gorna K, Polowinski S, Gogolewski S (2002) Synthesis and characterization of biodegradable poly(ε-caprolactone urethane)s. I. Effect of the polyol molecular weight, catalyst and chain extender on the molecular and physical characteristics. J Polym Sci Polym Chem 40:156–170

    Article  CAS  Google Scholar 

  21. Férnandez AM, Abraham GA, Valentin JL, Róman JS (2006) Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(ε-caprolactone) and amino acid derivatives. Polymer 47:785–798

    Article  Google Scholar 

  22. Quintana P, Bartolo-Pérez P (2010) Degradation studies on segmented polyurethanes prepared with HMDI, PCL and different chain extenders. Acta Biomater 6:2035–2044

    Article  Google Scholar 

  23. Rueda-Larraz L, Fernandez d’Arlas B, Tercjak A, Ribes A, Mondragon I, Eceiza A (2009) Synthesis and microstructure–mechanical property relationships of segmented polyurethanes based on a PCL–PTHF–PCL block copolymer as soft segment. Eur Polym J 45:2096–2109

    Article  CAS  Google Scholar 

  24. Saad GR, Lee YJ, Seliger H (2001) Synthesis and thermal properties of biodegradable poly(ester-urethane)s based on chemo-synthetic poly[(R, S)-3-hydroxybutyrate]. Macromol Biosci 1:91–99

    Article  CAS  Google Scholar 

  25. Guan J, Fujimoto KL, Sacks MS, Wagner WR (2005) Preparation and characterization of highly porous, biodegradable scaffolds for soft tissue applications. Biomaterials 26:3961–3971

    Article  CAS  Google Scholar 

  26. Rodrigues da Silva G, Junior A, Behar-Cohen F, Ayres E, Oréfice RL (2010) Biodegradation of polyurethanes and nanocomposites to non-cytotoxic degradation products. Polym Degrad Stab 95:491–499

    Article  CAS  Google Scholar 

  27. Piao L, Dai Z, Deng M, Chen X, Jing X (2003) Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst. Polymer 44:2025–2031

    Article  CAS  Google Scholar 

  28. Yen M, Kuo S (1997) PCL-PEG-PCL triblock copolydiol-based waterborne polyurethane. I. Effects of the soft-segment composition on the structure and physical properties. J Appl Polym Sci 65:883–392

    Article  CAS  Google Scholar 

  29. Mahkam M, Sanjani MS (2003) Preparation of new biodegradable polyurethanes as a therapeutic agent. Polym Degrad Stab 80:199–202

    Article  CAS  Google Scholar 

  30. Jiang X, Li J, Ding M, Tan H, Ling Q, Zhong Y, Fu Q (2007) Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur Polym J 43:1838–1846

    Article  CAS  Google Scholar 

  31. Srichatrapiuumuk VW, Cooper SL (1978) Infrared thermal analysis of polyurethane block polymers. J Macromol Sci Phys B15(2):267–311

    Google Scholar 

  32. Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Hydrogen bonding in polymer blends. 1. FTIR studies of urethane-ether blends. Macromolecules 21(1):59–65

    Article  CAS  Google Scholar 

  33. Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  34. Pan J, Li G, Chen Z, Chen X, Zhu W, XU K (2009) Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Biomaterials 30:2975–2984

    Article  CAS  Google Scholar 

  35. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  36. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886

    Article  CAS  Google Scholar 

  37. Flynn JH, Wall LA (1966) A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett Ed 4:323–328

    CAS  Google Scholar 

  38. Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng ZJ (2002) The kinetics of the thermal decomposition of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate). Appl Polym Sci 84:1789–1796

    Article  CAS  Google Scholar 

  39. Erceg M, Kovačić T, Perinović S (2008) Kinetic analysis of the non-isothermal degradation of poly(3-hydroxybutyrate) nanocomposites. Thermochim Acta 476:44–50

    Article  CAS  Google Scholar 

  40. Yeo SY, Tan WL, Abu Bakar M, Ismail J (2010) Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: thermal stability and kinetic analysis of thermal degradation. Polym Degrad Stab xxx:1–6, article under press

    Google Scholar 

  41. Lee MY, Lee TS, Park WH (2001) Effect of side chains on the thermal degradation of poly(3-hydroxyalkanoates). Macromol Chem Phys 202:1257–1261

    Article  CAS  Google Scholar 

  42. Li S-D, He J-D, Yu PH, Cheung MK (2003) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG-FTIR, and Py-GC/MS. J Appl Polym Sci 89:1530–1536

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Special thanks to Cairo University for supporting this research through Graduate Research Challenge Fund (GRCF) for distinguished young researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala F. Naguib.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naguib, H.F., Abdel Aziz, M.S., Sherif, S.M. et al. Synthesis and thermal characterization of poly(ester-ether urethane)s based on PHB and PCL-PEG-PCL blocks. J Polym Res 18, 1217–1227 (2011). https://doi.org/10.1007/s10965-010-9525-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9525-y

Keywords

Navigation