Skip to main content
Log in

Determination of the transition phenomena of poly(α-n-alkyl) methacrylates adsorbed on silica by inverse gas chromatography (IGC)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Inverse gas chromatography (IGC) at infinite dilution is a powerful technique to characterise the superficial and interfacial properties of solid substrates as oxides, polymers or polymers adsorbed on oxides and to determine the transition phenomena of polymers. This technique was applied in earlier studies in order to determine the change, as related to temperature, of the properties and the second order transitions of some polymers adsorbed on oxides, and particularly to study the transition phenomena in PMMA and poly(α-n-propyl) methacrylate (P3) adsorbed on silica or in their bulk phases. In this paper, the superficial properties and glass transitions of poly(α-n-pentyl) methacrylate (P5) and poly(α-n-octyl) methacrylate (P8) were studied when adsorbed on silica or in their bulk phases. The study of the evolution of RTlnVn, as a function of 1/T for different n-alkanes adsorbed on poly(α-n-alkyl) methacrylates (Pn), proved that IGC technique allowed a fairly accurate determination of their transition temperature (Tg). Moreover, the glass transition temperature Tg was observed to vary from 110 °C for PMMA (P1) to 10 °C for poly(α-n-octyl) methacrylate. Results obtained in this study proved an important shift in the value of Tg, due to the adsorption of various Pn on silica and the more spread chains of the adsorbed polymers. A reduction in Tg value was observed when the length of the side chain increases that leads to an internal plastification effect in poly(α-n-alkyl)methacrylates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kim SH, Chung JW, Kang TJ, Kwak S-Y, Suzuki T (2007) Polymer 48:4271–4277

    Article  CAS  Google Scholar 

  2. Plazek DJ, Ngai KL (1996) In: Mark JE (ed) Physical properties of polymers handbook. American Institute of Physics, Woodbury

    Google Scholar 

  3. McKenna GB (1989) In: Booth C, Price C (eds) Comprehensive polymer science, polymer properties, vol 2, chapter 2. Pergamon, Oxford

    Google Scholar 

  4. McKenna GB, Simon SL (2002) In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry, applications to polymers and plastics, vol 3. Elsevier Science

  5. Schreiber HP, Lloyd DR (1989) Overview of inverse gas chromatography. In: Lloyd DR, Ward TC, Schreiber HP (eds) Inverse gas chromatography: characterization of polymers and other materials. American Chemical Society, Washington, DC, pp 1–10

    Chapter  Google Scholar 

  6. Dewaele M, Asmussen E, Peutzfeldt A, Munksgaard EC, Benetti AR, Finné G, Leloup G, Devaux J (2009) Dent Mater 25:1576–1584

    Article  CAS  Google Scholar 

  7. Campbell D, Pethrick RA, White JR (2000) Polymer characterization: physical techniques, 2nd edn. CRC Press, London, 481 p

    Google Scholar 

  8. Gómez Ribelles JL, Monleón Pradas M, Meseguer Dueñas JM, Torregrosa Cabanilles C (2002) J Non-Cryst Solids 307–310:731–737

    Article  Google Scholar 

  9. Korus J, Beiner M, Busse K, Kahle S, Unger R, Donth E (1997) Thermochim Acta 304/305:99–110

    Article  CAS  Google Scholar 

  10. Donth E, Korus J, Hempel E, Beiner M (1997) Thermochim Acta 304/305:239–250

    Article  CAS  Google Scholar 

  11. Weyer S, Hensel A, Korus J, Donth E, Schick C (1997) Thermochim Acta 304/305:251–256

    Article  CAS  Google Scholar 

  12. Zeeb S, Höring S, Garwe F, Beiner M, Hempel E, Schönhals A, Schröter K, Donth E (1997) Polymer 38:4011–4018

    Article  Google Scholar 

  13. Garwe F, Schönhals A, Lockwenz H, Schröter K, Donth E (1996) Macromolecules 29:247–253

    Article  CAS  Google Scholar 

  14. Donth E, Beiner M, Reissig S, Korus J, Garwe F, Vieweg S, Kahle S, Hempel E, Schröter K (1996) Macromolecules 29:6589–6600

    Article  CAS  Google Scholar 

  15. Kahle S, Korus J, Hempel E, Unger R, Höring S, Schröter K, Donth E (1997) Macromolecules 30:7214–7223

    Article  CAS  Google Scholar 

  16. Korus J, Hempel E, Beiner M, Kahle S, Donth E (1997) Acta Polym 48:369–378

    Article  CAS  Google Scholar 

  17. Majumdar A, Carrejo JP, Lai J (1993) Appl Phys Lett 62(20):2501–2503

    Article  CAS  Google Scholar 

  18. Pollock HM, Hammiche A (2001) J Phys D Appl Phys 34(9):R23–R53

    Article  CAS  Google Scholar 

  19. Boyers RF (1997) In: Mark HF, Bikales NM (eds) Encyclopedia of polymer science and technology, Suppl. vol II. Wiley, New York, p 745

    Google Scholar 

  20. Kunaver M, Zadnik J, Planinsek O, Sreie S (2004) Acta Chim Slov 51:373–394

    CAS  Google Scholar 

  21. Rieger J (1996) J Therm Anal 46(3–4):965–972

    CAS  Google Scholar 

  22. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  23. Rieger J (2001) Polym Test 20:199–204

    Article  CAS  Google Scholar 

  24. Hagen R, Salmén L, Lavebratt H, Stenberg B (1994) Polym Test 13:113–128

    Article  CAS  Google Scholar 

  25. Dinelli F, Buenviaje C, Overney RM (2001) Thin Solid Films 396(1–2):138–144

    Article  CAS  Google Scholar 

  26. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney RM (2000) Phys Rev Lett 85(11):2340–2343

    Article  CAS  Google Scholar 

  27. Sills S, Overney RM, Chau W, Lee VY, Miller RD, Frommer J (2004) J Chem Phys 120(11):5334–5338

    Article  CAS  Google Scholar 

  28. Bliznyuk VN, Assender HE, Briggs AD (2002) Macromolecules 35(17):6613–6622

    Article  CAS  Google Scholar 

  29. Oulevey F, Burnham NA, Gremaud G, Kulik AJ, Pollock HM, Hammiche A, Reading M, Song M, Hourston DJ (2000) Polymer 41(8):3087–3092

    Article  CAS  Google Scholar 

  30. Meincken M, Graef S, Mueller-Nedebock K, Sanderson RD (2002) Appl Phys A Mater 74(3):275–371

    Google Scholar 

  31. Tsukruk VV, Gorbunov VV, Fuchigami N (2003) Thermochim Acta 395(1–2):151–158

    CAS  Google Scholar 

  32. Wang C (2004) Thermochim Acta 423(1–2):89–97

    Article  CAS  Google Scholar 

  33. Fischer H (2005) Macromolecules 38(3):844–850

    Article  CAS  Google Scholar 

  34. Hammerschmidt JA, Gladfelter WL, Haugstad G (1999) Macromolecules 32(10):3360–3367

    Article  CAS  Google Scholar 

  35. Tanaka K, Taura A, Ge S-R, Takahara A, Kajiyama T (1996) Macromolecules 29(8):3040–3042

    Article  CAS  Google Scholar 

  36. Smisrod O, Guillet JE (1969) Macromolecules 2:272

    Article  Google Scholar 

  37. Lavoie A, Guillet JE (1969) Macromolecules 2:443

    Article  CAS  Google Scholar 

  38. Gray DG, Guillet JE (1974) Macromolecules 7:244

    Article  CAS  Google Scholar 

  39. Braun JM, Lavoie A, Guillet JE (1975) Macromolecules 8:311

    Article  CAS  Google Scholar 

  40. Braun JM, Guillet JE (1975) Macromolecules 8:882

    Article  CAS  Google Scholar 

  41. Braun JM, Guillet JE (1976) Macromolecules 9:617

    Article  CAS  Google Scholar 

  42. Bogillo VI, Voelkel A (1995) J Chromatogr A 715:127

    Article  CAS  Google Scholar 

  43. Bogillo VI, Voelkel A (1995) Polymer 36:3503

    Article  CAS  Google Scholar 

  44. Liebman SA, Ahlstrom DH, Foltz CR (1972) J Chromatogr 67:153

    Article  CAS  Google Scholar 

  45. Sanetra R, Kolarz BN, Wlochowicz A (1987) Polymer 28:1753

    Article  CAS  Google Scholar 

  46. Podlesnuyk VV, Hradil J, Kralova E (1999) React Funct Polym 42:181–191

    Article  Google Scholar 

  47. Nemtoi G, Beldie C (1995) Rev Roum Chim 40:335

    CAS  Google Scholar 

  48. Minagawa M, Kanoh H, Tanno S, Nishimoto Y (2002) Macromol Chem Phys 203:2475–2480

    Article  CAS  Google Scholar 

  49. Minagawa M, Kanoh H, Tanno S, Nishimoto Y (2002) Macromol Chem Phys 203:2481–2487

    Article  CAS  Google Scholar 

  50. Chen CT, Al-Saigh ZY (1990) Polymer 31:1170–1176

    Article  CAS  Google Scholar 

  51. Kaya I, Ozdemir E (1995) Macromol Rep A 32:377–392

    Article  Google Scholar 

  52. Nastasovi B, Onjia AE (2008) J Chromatogr A 1195:1–15

    Article  Google Scholar 

  53. Hamieh T, Schultz J (2002) J Chromatogr A 969:27–36

    Article  CAS  Google Scholar 

  54. Hamieh T, Rezzaki M, Schultz J (1997) J Therm Anal 51:793–804

    Google Scholar 

  55. Hamieh T, Rezzaki M, Grohens Y, Schultz J (1998) J Chim Phys 95:1964–1990

    Article  CAS  Google Scholar 

  56. Hamieh T, Rezzaki M, Schultz J (2001) J Colloid Interface Sci 233(2):339–342

    Article  CAS  Google Scholar 

  57. Hamieh T, Rezzaki M, Schultz J (2001) J Colloid Interface Sci 233(2):343–347

    Article  CAS  Google Scholar 

  58. Hamieh T, Schultz J (2002) J Chromatogr A 969(1–2):17–25

    Article  CAS  Google Scholar 

  59. Hamieh T, Fadlallah M-B, Schultz J (2002) J Chromatogr A 969(1–2):37–47

    Article  CAS  Google Scholar 

  60. Burel F, Couvercelle JP, Bunel C, Saiter JM (1995) J Macromol Sci Part A Pure Appl Chem 32(6):1091–1102

    Article  Google Scholar 

  61. Godard ME, Saiter JM, Cortes P, Montserrat S, Hutchinson JM, Burel F, Bunel C (1998) J Polym Sci B Polym Phys 36:583–591

    Article  CAS  Google Scholar 

  62. Godard ME, Saiter JM, Burel F, Bunel C, Cortes P, Montserrat S, Hutchinson JM (1996) Polym Eng Sci 36(24):2978–2985

    Article  CAS  Google Scholar 

  63. Godard ME, Burel F, Saiter JM, Grenet J (1998) J Therm Anal 51:897–903

    CAS  Google Scholar 

  64. Conder JR, Young CL (1979) Physical measurements by gas chromatography. Wiley, New York

    Google Scholar 

  65. Godard ME (1999) PhD Thesis, Physics, University of Rouen

  66. Llorente MA, Menduina C (1979) J Polym Sci 17:189–195

    CAS  Google Scholar 

  67. Yoshida H, Kobayashi Y (1982) J Macromol Sci Phys Ed 21:565–581

    Article  Google Scholar 

  68. Ogawa Y, Ootani K (1999) Polym J 31(1):51–54

    Article  CAS  Google Scholar 

  69. Ojha DP, Kumar D, Pisipati VGKM (2002) Z Naturforsch 57:189–193

    CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges the financial support from The Lebanese University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayssir Hamieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamieh, T. Determination of the transition phenomena of poly(α-n-alkyl) methacrylates adsorbed on silica by inverse gas chromatography (IGC). J Polym Res 18, 1159–1168 (2011). https://doi.org/10.1007/s10965-010-9519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9519-9

Keywords

Navigation