Skip to main content
Log in

Hyperbranched poly (amine-ester)-poly(ε-caprolactone) copolymer and their nanoparticles as camptothecin delivery system

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A new amphiphilic hyperbranched poly (amine-ester)-poly(ε-caprolactone) copolymer (HPAE-co-PCL) was synthesized by ring-opening polymerization of ε-caprolactone and branched poly (amine-ester) (HPAE-OHs) with Sn(Oct)2 as catalyst. The chemical structures of copolymers were determined by FT-IR, 1H-NMR (13C-NMR), thermo gravimetric analysis apparatus (TGA) and differential scanning calorimetry (DSC). Camptothecin (CPT)-loaded copolymer nanoparticles were prepared by the oil-in water (o/w) emulsion technique method. Their physicochemical characteristics, e.g. morphology and nanoparticles size distribution were then evaluated by means of fluorescence spectroscopy, environmental scanning electron microscopy (ESEM), and dynamic light scattering (DLS). CPT-loaded nanoparticles assumed a spherical shape and have unimodal size distribution. It was found that the chemical composition of the nanoparticles was a key factor in controlling nanoparticles size, drug-loading content, and drug release behavior. As the molar ratio of ε-caprolactone to HPAE increased, the nanoparticles size and drug-loading content increased, and the drug release rate decreased. The antitumor activity of the CPT-loaded HPAE-co-PCL nanoparticles against human hepatoma HEPG2 cells was evaluated by 3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The CPT-loaded HPAE-co-PCL nanoparticles showed comparable anticancer efficacy with the free drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Riess G (2003) Prog Polym Sci 28:1107

    Article  CAS  Google Scholar 

  2. Lei LC, Gohy JF, Willet N, Zhang JX, Varshney S, Jerome R (2006) Polymer 47:2723

    Article  CAS  Google Scholar 

  3. Lo CL, Huang CK, Lin KM, Hsiue GH (2007) Biomaterials 28:1225

    Article  CAS  Google Scholar 

  4. Han HD, Shin BC, Choi HS (2006) Eur J Pharm Biopharm 62:110

    Article  CAS  Google Scholar 

  5. Yoo HS, Park TG (2001) J Control Rel 70:63

    Article  CAS  Google Scholar 

  6. Hans M, Shimoni K, Danino D, Siegel SJ, Lowman A (2005) Biomacromolecules 6:2708

    Article  CAS  Google Scholar 

  7. Lin R, Ng LS, Wang CH (2005) Biomaterials 26:4476

    Article  CAS  Google Scholar 

  8. Wang CH, Wang CH, Hsiue GH (2005) J Control Rel 108:140

    Article  CAS  Google Scholar 

  9. Agrawal SK, Sanabria-DeLong N, Coburn JM, Tew GN, Bhatia SR (2006) J Control Rel 112:64

    Article  CAS  Google Scholar 

  10. Jiang XZ, Zhang JY, Zhou YM, Xu J, Liu SY (2008) J Polym Sci Part A: Polym Chem 46:860

    Article  CAS  Google Scholar 

  11. Zhu ZS, Li Y, Li XL, Li RT, Jia ZJ, Liu BR, Guo WH (2010) J Control Rel 142:438

    Article  CAS  Google Scholar 

  12. Zhang WL, Li YL, Liu LX, Sun QQ, Shuai XT, ZHU W, Chen YM (2010) Biomacromolecules 11:1331

    Article  CAS  Google Scholar 

  13. Duan KR, Chen HL, Huang J, Yu JH, Liu SY, Wang DX, Li YP (2010) Carbohydrate Polymers 80:498

    Article  CAS  Google Scholar 

  14. Torchilin VP (2001) J Control Rel 73:137

    Article  CAS  Google Scholar 

  15. Layre A, Couvreur P, Chacun H, Richard J, Passirani C, Requier D, Benoit JP, Gref R (2006) J Control Rel 111:271

    Article  CAS  Google Scholar 

  16. Savic R, Luo L, Eisenberg A, Maysinger D (2003) Science 300:615

    Article  CAS  Google Scholar 

  17. Li YY, Zhang XZ, Kim GC, Cheng H, Cheng SX, Zhuo RX (2006) Small 2:917

    Article  CAS  Google Scholar 

  18. Gao C, Yan D (2004) Prog Polym Sci 29:183

    Article  CAS  Google Scholar 

  19. Bikiaris DN, Karayannidis GP (2003) Polym Int 52:1230

    Article  CAS  Google Scholar 

  20. Tian HY, Deng C, Lin H, Sun JR, Deng MX, Chen XS, Jing XB (2005) Biomaterials 26:4209

    Article  CAS  Google Scholar 

  21. Rajesh KK, Muthiah G, Munia G, Tanay G, Donald EB, Souvik M, Jayachandran NK (2006) Biomaterials 27:5377

    Article  Google Scholar 

  22. Karger-Kocsis J, Frohlich J, Gryshchuk O, Kautz H, Frey H, Mulhaupt R (2004) Polymer 45:1185

    Article  CAS  Google Scholar 

  23. Gao C, Xu YM, Yan DY, Chen W (2003) Biomacromolecules 4:704

    Article  CAS  Google Scholar 

  24. Kolhe P, Misra E, Kannan RM, Kannan S, Lieh-Lai M (2003) Int J Pharm 259:143

    Article  CAS  Google Scholar 

  25. Hyun JK, Min SK, Joon SC, Bo HK, Jae KY, Kwan K, Jong-sang P (2007) Bioorgan & Med Chem 15:1708

    Article  Google Scholar 

  26. Garcia-Carbonero R, Supko JG (2002) Clin Cancer Res 8:641

    CAS  Google Scholar 

  27. Hatefi A, Amsden B (2002) Pharm Res 19:1389

    Article  CAS  Google Scholar 

  28. Bogdanov B, Vidts A, Van Den Bulcke A, Verbeeck R, Schacht E (1998) Polymer 39:1631

    Article  CAS  Google Scholar 

  29. Zhu BK, Wei XZ, Xiao L, Xu YY, Geckeler KE (2006) Polymer International 55:63

    Article  CAS  Google Scholar 

  30. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS (1999) J Control Rel 57:171

    Article  CAS  Google Scholar 

  31. Jeong YI, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, Akaike T, Cho CS (1998) Rel 51:169

    Article  CAS  Google Scholar 

  32. Lu Y, Lin D, Wei HY, Shi WF (2000) Acta Polymerica Sinica 4:411

    Google Scholar 

  33. Karayannidis GP, Roupakias CP, Bikiaris DN, Achilias DS (2003) Polymer 44:931

    Article  CAS  Google Scholar 

  34. Zhang LM (2001) Carbohydrate Polymers 45:1

    Article  CAS  Google Scholar 

  35. Choi KC, Bang JY, Kim PI, Kim C, Song CE (2008) Int J Pharm 355:224

    Article  CAS  Google Scholar 

  36. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) J Control Rel 25:89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Project supported by the major program for fundamental research of the Chinese academy of sciences, China (No: KJCX2-YW-M02); the State Key Development Program for Basic Research of China (973) (No: 2009CB930200;2010CB934004), (863) (No: 2007AA02Z150; 2006AA03Z321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

(TIFF 47 kb)

Fig S2

(TIFF 47 kb)

Table S1

(DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Wang, T., Li, M. et al. Hyperbranched poly (amine-ester)-poly(ε-caprolactone) copolymer and their nanoparticles as camptothecin delivery system. J Polym Res 18, 1147–1158 (2011). https://doi.org/10.1007/s10965-010-9518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9518-x

Keywords

Navigation