Skip to main content
Log in

Mechanically strengthened double network composite hydrogels with high water content: a preliminary study

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel poly[(1,2-ethylenediamino) (2-hydroxy-1,3-propanedily) chloride]/ Laponite/polyacrylic acid (PEDAECH/Laponite/PAA) hydrogel was synthesized by two-step solution polymerization combining nanocomposite (NC) strategy with double network (DN). The structural characteristics of resulting hydrogels were investigated by Fourier Transform infrared spectrum (FTIR) and Transmission Electron Microscopy (TEM). A core shell structure was observed in PEDAECH/Laponite composite. The swelling and mechanical strength of the resulting hydrogels were measured when PEDAECH/Laponite composite dose varied. The novel hydrogel achieved a high compressive stress of 148.0 KPa even in higher water content of 98.7% when the PEDAECH/Laponite composite dose is 0.05 ml, the dose of AA was 3.6 ml, N, N′-methylenebisacrylamide (MBAM) dose was 0.04 wt% (based on the weight of AA) and reaction temperature was 0 °C, Based on the cyclic compression studies, there is a small decline in the maximum stress of the hydrogels at the fixed strain of 45% even under three cyclic compressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoshihito O, Gong JP (1998) Adv Mater 10:827

    Article  Google Scholar 

  2. Ketelson HA, Meadows DL, Stone RP (2005) Colloids Surf B 40:1. doi:10.1016/j.colsurfb.2004.07.010

    Article  CAS  Google Scholar 

  3. Liu Y, Xie J, Zhang X (2003) J Appl Polym Sci 90:3481. doi:10.1002/app.13003

    Article  CAS  Google Scholar 

  4. Murakami Y, Maedaizuo M (2005) Biomacromolecules 6:2927. doi:10.1021/bm0504330

    Article  CAS  Google Scholar 

  5. Rama Rao GV, Krug ME, Balamurugan S, Xu H, Xu Q, Lopez GP (2002) Chem Mater 14:5075. doi:10.1021/cm020627b

    Article  Google Scholar 

  6. Guilherme MR, Silva R, Girotto EM, Rubira AF, Muniz EC (2003) Polymer 44:4213. doi:10.1016/S0032-3861(03)00370-7

    Article  CAS  Google Scholar 

  7. Zhuo RX, Li W (2003) J Polym Sci A: Polym Chem 41:152. doi:10.1002/pola.10570

    Article  CAS  Google Scholar 

  8. Haraguchi K, Takehisa T (2002) Adv Mater 14:1120

    Article  CAS  Google Scholar 

  9. Okumura Y, Ito K (2001) Adv Mater 13:485

    Article  CAS  Google Scholar 

  10. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Adv Mater 15:1155. doi:10.1002/adma.200304907

    Article  CAS  Google Scholar 

  11. Huang T, Xu HG, Jiao KX, Zhu LP, Brown HR, Wang HL (2007) Adv Mater 19:1622. doi:10.1002/adma.200602533

    Article  CAS  Google Scholar 

  12. Haraguchi K, Takehisa T, Fan S (2002) Macromolecules 35:10162. doi:10.1021/ma021301r

    Article  CAS  Google Scholar 

  13. Weng L, Gouldstone A, Wu Y, Chen W (2008) Biomaterials 29:2153. doi:10.1016/j.biomaterials.2008.01.012

    Article  CAS  Google Scholar 

  14. Jang SS, Goddard WA, Kalani MYS, Myung D, Frank CW (2007) J Phys Chem B 111:14440

    Article  CAS  Google Scholar 

  15. Myung D, Koh W, Ko J, Hu Y, Carrasco M, Noolandi J, Ta CN, Frank CW (2007) Polymer 48:5376. doi:10.1016/j.polymer.2007.06.070

    Article  CAS  Google Scholar 

  16. Karino T, Okumura Y, Ito K (2004) Macromolecules 37:6177. doi:10.1021/ma049598b

    Article  CAS  Google Scholar 

  17. Lin J, Xu S, Shi X, Feng S, Wang J (2008) Polym Adv Technol 20:645. doi:10.1002/pat.1322

    Article  Google Scholar 

  18. Nemtoi G, Onu A, Aelenei N, Dragan S, Beldie C (2000) Eur Polym J 36:2679

    Article  CAS  Google Scholar 

  19. Yi JZ, Zhang LM (2007) Eur Polym J 43:3215. doi:10.1016/j.eurpolymj.2007.05.023

    Article  CAS  Google Scholar 

  20. Shi XM, Xu SM, Lin JT, Feng S, Wang JD (2009) Mater Lett 63:527. doi:10.1016/j.matlet.2008.11.029

    Article  CAS  Google Scholar 

  21. Liu G, Li L, Yang X (2008) Polymer 49:4776. doi:10.1016/j.polymer.2008.08.043

    Article  CAS  Google Scholar 

  22. Haraguchi K, Ebato M, Takehisa T (2006) Adv Mater 18:2250. doi:10.1002/adma.200600143

    Article  CAS  Google Scholar 

  23. Miyazaki S, Karino T, Haraguchi K, Endo H, Shibayama M (2006) Macromolecules 39:8112. doi:10.1021/ma061688o

    Article  CAS  Google Scholar 

  24. Webber RE, Creton C, Brown HR, Gong JP (2007) Macromolecules 40:2919. doi:10.1021/ma062924y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports for this work were provided from Natural Science Foundation of China (No. 50763005) and Xinjiang University initiation funds (BS. 090119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fei, X., Xu, S., Feng, S. et al. Mechanically strengthened double network composite hydrogels with high water content: a preliminary study. J Polym Res 18, 1131–1136 (2011). https://doi.org/10.1007/s10965-010-9516-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9516-z

Keywords

Navigation