Skip to main content

Structural, elastic and thermal properties of titanium dioxide filled isotactic polypropylene

Abstract

Titanium dioxide (TiO2)-filled isotactic polypropylene (iPP) composites with various contents of TiO2 were prepared by a locally fabricated extrusion molding machine. The extrudates were melt-pressed at 180 °C and produced as plane sheets of nearly equal thickness by rapid cooling. X-ray diffraction studies reveal a decrease of crystallinity and crystallites size as well as a change of α-, β- and γ-crystalline phases of the neat iPP to the α-form due to filler inclusion. Scanning electron micrographs taken on the fractured surface of the samples show increasing amount of voids with increasing filler content. Tensile strength, elongation-at-break (%) and glass transition temperature of the samples are found to decrease considerably with the increase in TiO2 content, whereas microhardness decreases slightly with the filler content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Deanin RD, Schott NR (1974) Fillers for reinforcement for plastics. American Chemical Society, Washington DC

    Book  Google Scholar 

  2. 2.

    Lutz JT (1989) Thermoplastic polymer additives, theory and practice. Marcel Dekker, New York

    Google Scholar 

  3. 3.

    Karger-Kocsis J (1999) Polypropylene. Kluwer Academic, Dordrecht

    Google Scholar 

  4. 4.

    Luyt AS, Molefi JA, Krump H (2006) Polym Degrad Stab 91:1629–1636

    Article  CAS  Google Scholar 

  5. 5.

    Lee Y-J, Manas-Zloczower I, Feke DL (1995) Polym Eng Sci 35(12):1037–1045

    Article  CAS  Google Scholar 

  6. 6.

    Mansour SH, Abd-El-Messieh SL (2002) J Appl Polym Sci 83:1167–1180

    Article  CAS  Google Scholar 

  7. 7.

    Liu Z, Gilbert MJ (1996) J Appl Polym Sci 59(7):1087–1098

    Article  CAS  Google Scholar 

  8. 8.

    Wang Y, Wang J (1999) Polym Eng Sci 39(1):190–198

    Article  CAS  Google Scholar 

  9. 9.

    Zhou Y, Rangari V, Mahfuz H, Jeelani S, Mallick PK (2005) Mater Sci Eng 402:109–117

    Article  Google Scholar 

  10. 10.

    Lei SG, Hoa SV, Ton-That MT (2006) Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  11. 11.

    Wunderlich B (1973) Macromolecular physics: Vol. 1, crystal structure, morphology and defects. Academic, New York

    Google Scholar 

  12. 12.

    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, NJ

    Google Scholar 

  13. 13.

    Balta Calleja FJ, Fakirov S (200) Microhardness of polymers. Cambridge University Press

  14. 14.

    Karger-Kocsis J, Varga J (1995) Polypropylene: structure, blends and composites, Vol. 1, structure and morphology. Chapman & Hall, London

    Google Scholar 

  15. 15.

    Obadal M, Cermak M, Stoklasa K (2005) Macromol Rapid Commun 26:1253–1257

    Article  CAS  Google Scholar 

  16. 16.

    Chen M, Tian G, Zhang Y, Wan C, Zhang Y (2006) J Appl Polym Sci 100:1889–1898

    Article  CAS  Google Scholar 

  17. 17.

    Rybniker F (1982) J Appl Polym Sci 27:1479–1486

    Article  Google Scholar 

  18. 18.

    Dai W, Lui P, Wang X (2003) J Appl Polym Sci 88:2791–2796

    Article  CAS  Google Scholar 

  19. 19.

    Al-Raheil IA, Qudah A, Al-Share M (1998) J Appl Polym Sci 66(7):1261–1271

    Google Scholar 

  20. 20.

    Powder diffraction file, Published by JCPDS (1983) International centre for diffraction data, Pennsylvania, USA

  21. 21.

    Varkalis A, Gedde UW (1993) Thermochim Acta 214:123–128

    Article  CAS  Google Scholar 

  22. 22.

    Supaphol P, Charoenphol P, Junkasem J (2004) Macromol Mater Eng 289:818–827

    Article  CAS  Google Scholar 

  23. 23.

    Mucha M, Królikowski Z (2003) J Therm Anal Calorim 74:549–557

    Article  CAS  Google Scholar 

  24. 24.

    Saqan S, Zihlif AM, Ragosta G (2008) J Thermoplast Compos Mater 21:457–467

    Article  CAS  Google Scholar 

  25. 25.

    Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Polymer 43:3661–3674

    Article  CAS  Google Scholar 

  26. 26.

    Wang Z, Hao W, Zhang Z, Cui Z (2008) J Macromol Sci Part B 47:576–588

    Article  CAS  Google Scholar 

  27. 27.

    Nielsen R (1974) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

  28. 28.

    Rusu M, Sofian N, Rusu D (2001) Polym Test 20(4):409–417

    Article  CAS  Google Scholar 

  29. 29.

    Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) J Appl Polym Sci 98:1087–1091

    Article  CAS  Google Scholar 

  30. 30.

    Mubarak YA, Abbadi FO, Tobgy AH (2005) J Appl Polym Sci 98:1087–1091

    Article  Google Scholar 

  31. 31.

    Mina MF, Haque MA, Bhuiyan MKH, Gafur MA, Tamba Y, Asano T (2010) J Appl Polym Sci 118:312–319

    CAS  Google Scholar 

  32. 32.

    Chung MJ, Jang LW, Shim JH, Yoon JS (2005) J Appl Polym Sci 95:307–311

    Article  CAS  Google Scholar 

  33. 33.

    Brown J, Rhoney I, Pethrick RA (2004) Polym Int 53:2130–2137

    Article  CAS  Google Scholar 

  34. 34.

    Wu DZ, Wang XD, Song YZ, Jin RG (2004) J Appl Polym Sci 92:2714–2723

    Article  CAS  Google Scholar 

  35. 35.

    Zhou RJ, Burkhart T (2010) J Mater Sci 45:3016–3022

    Article  CAS  Google Scholar 

  36. 36.

    Wang SW, Yang W, Bao RY, Wang B, Xie BH, Yang MB (2010) Colloid Polym Sci 288:681–688

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support provided by the Bangladesh University of Engineering and Technology (BUET) for performing this investigation. They are also grateful to the Department of Materials and Metallurgical Engineering, BUET and Industrial Physics Division, BCSIR for technical supports of DSC and SEM measurements, respectively.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Jellur Rahman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhuiyan, A.H., Mina, M.F., Seema, S. et al. Structural, elastic and thermal properties of titanium dioxide filled isotactic polypropylene. J Polym Res 18, 1073–1079 (2011). https://doi.org/10.1007/s10965-010-9509-y

Download citation

Keywords

  • Isotactic polypropylene
  • X-ray diffraction
  • Microhardness
  • Tensile strength