Skip to main content
Log in

FI Zr-type catalysts for ethylene polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Two FI-type catalysts of Bis[N-(3,5-dicumylsalicylidene)-naphthylaminato]zirconium(IV) dichloride (catalyst (a)) and Bis[N-(3,5-dicumylsalicylidene)-anthracylaminato]zirconium(IV) dichloride (catalyst (b)) were prepared and used for ethylene polymerization comparatively. Methylaluminoxane (MAO) was used as cocatalyst. Polymerization reactions of ethylene using the prepared catalysts at the different conditions of polymerization were carried out. Plurality of the fused aromatic rings on the N atom of the imine in the catalyst structure affected the polymerization activity and molecular weight of the resulting polymer as well. Productivity of the prepared catalysts increased with the addition of [Al]/[Zr] molar ratio. The highest activity was observed at about 35–40 °C for the catalysts. The catalyst (b) produced higher viscosity average molecular weight (Mv) of the obtained polyethylene, while generally the activity of the catalyst (a) was higher than the catalyst (b). Similar behavior was observed for the polymerization carried out at the monomer pressure of 2 to 6 bars using the catalysts. The higher the pressure the more activity of the catalysts obtained, in the range studied. Crystallinity and melting point of the obtained polymer were between 55–65% and 120–135 °C respectively. Higher pressure increased both the crystallinity and the Mv values of the resulting polymer. The polymerization was carried out using different amounts of hydrogen. Higher amount of hydrogen could increase the activity of the catalysts. A linear dependence between the polymerization time and the molar weight was observed, however the polydispersity was broadened with the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vestberg T, Denifl P, Wilen C-E (2008) J Appl Polym Sci 11:2021

    Article  Google Scholar 

  2. Kashiwa NJ (2004) Polym Sci Part A: Polym Chem 42:1

    Article  CAS  Google Scholar 

  3. Zohuri GH, Ahmadi Bonakdar M, Damavandi S, Eftekhar M, Askari M, Ahmadjo S (2009) Iran Polym J 18:7

    Google Scholar 

  4. Kaminsky WJ (2004) Polym Sci Part A: Polym Chem 42:3911

    Article  CAS  Google Scholar 

  5. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283

    Article  CAS  Google Scholar 

  6. Suhm J, Heinemann J, Worner C, Muller P, Stricker F, Kressler J, Okuda J, Mulhaupt R (1998) Macromol Symp 129:1

    Article  CAS  Google Scholar 

  7. McKnight AL, Waymouth RM (1998) Chem Rev 98:2587

    Article  CAS  Google Scholar 

  8. Britovsek GJP, Gibson VC, Wass DF (1999) Angew Chem Int Ed 38:429

    Article  Google Scholar 

  9. Gibson VC, Spitzmesser SK (2003) Chem Rev 103:283

    Article  CAS  Google Scholar 

  10. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169

    Article  CAS  Google Scholar 

  11. Alt HG, Koppl A (2000) Chem Rev 100:1205

    Article  CAS  Google Scholar 

  12. Chen EY-X, Marks TJ (2000) Chem Rev 100:1391

    Article  CAS  Google Scholar 

  13. Nomura K (2005) In: Bevy LP (ed) New developments in catalysis research. Nova Science Publishers, Inc, New York, p 199

    Google Scholar 

  14. Nomura K, Liu J, Padmanabhan S, Kitiyanan B (2007) J Mol Catal A 267:1

    Article  CAS  Google Scholar 

  15. Matsui S, Fujita T (2001) Catal Today 66:63

    Article  CAS  Google Scholar 

  16. Matsukawa N, Matsui S, Mitani M (2001) J Mol Catal A: Chem 169:99

    Article  CAS  Google Scholar 

  17. Furuyama R, Saito J, Ishii SI, Mitani M, Matsui S, Tohi Y, Makio H, Matsukawa N, Tanaka H, Fujita T (2003) J Mol Catal A: Chem 200:31

    Article  CAS  Google Scholar 

  18. Nakayama Y, Bando H, Sonabe Y, Fujita T (2004) J Mol Catal A: Chem 213:141

    Article  CAS  Google Scholar 

  19. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Science 287:460

    Article  CAS  Google Scholar 

  20. Ahmadjo S, Jamjah R, Zohuri GH, Damavandi S, Nekomanesh M, Javaheri M (2007) Iran Polym J 16:31. doi:31

    CAS  Google Scholar 

  21. Brandrup J, Immergut EH (1989) Polymer handbook VII, 3 rd Edth edn. Wiley, New York, pp 1–7

    Google Scholar 

  22. Justino J, Dias AR, Ascenso J, Marcues MM, Tait PJT (1997) Polym Int 44:412

    Google Scholar 

  23. Yasunori Y, Shigekazu M, Terunori F (2005) J Organomet Chem 690:4382

    Article  Google Scholar 

  24. Matsui S, Mitani M, Saito J, Ishii SI, Mitani M, Matsui S, Tohi Y, Makio H, Matsukawa N, Tsuru K, Masatoshi N, Nakano T, Tanaka H, Kashiwa N, Fujita T (2001) J Am Chem Soc 123:6847

    Article  CAS  Google Scholar 

  25. Peacock AJ (2000) Handbook of Polyethylene. Marcel Dekker, INC, New York

    Google Scholar 

  26. Santos JHZD, Rosa MBD, Krug C, Stedile FCS, Haag MC, Dupont J, Forte MDC (1996) J Polym Sci A: Polym Chem 37(13):1987

    Article  Google Scholar 

  27. Kuran W (2001) Principles of coordination polymerization. Wiley, New York, p 10

    Book  Google Scholar 

  28. Suzuki Y, Terao H, Fujita T (2003) Bull Chem Soc Jpn 76:1493

    Article  CAS  Google Scholar 

  29. Ishii S, Saito J, Mitani M, Mohri J, Matsukawa N, Tohi Y, Matsui S, Kashiwa N, Fujita T (2002) J Mol Catal 179:11

    Article  CAS  Google Scholar 

  30. Rieger B, Saunders Baugh L, Kacker S, Striegler S (eds) (2003) Late transition metal polymerization catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  31. Zhang J, Wang X, Jin GX (2006) Coord Chem Rev 250:95

    Article  CAS  Google Scholar 

  32. Ivanchev SS, Trunov VA, Rybakov VB, Albov DV, Rogozin DG (2005) Dik Phys Chem 404:165

    Article  CAS  Google Scholar 

  33. Tohi Y, Makio H, Matsui S, Onda M, Fujita T (2003) Macromolecules 36:3

    Article  Google Scholar 

  34. MAkio H, Fujita T (2004) Macromol Symp 213:221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saman Damavandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damavandi, S., Galland, G.B., Zohuri, G.H. et al. FI Zr-type catalysts for ethylene polymerization. J Polym Res 18, 1059–1065 (2011). https://doi.org/10.1007/s10965-010-9507-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9507-0

Keywords

Navigation