Skip to main content
Log in

Pseudokinetics for the copolymerization of butadiene and styrene produced using n-butyl lithium and N,N,N′,N′-tetramethylethylenediamine, considering different reactivities of the structural units

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The anionic solution copolymerization of butadiene and styrene prepared by anionic living polymerization using an initiator composed of n-butyl lithium, and N,N,N′,N′-tetramethylethylenediamine as active center modifier was modeled as a tetrapolymerization. The kinetic model proposed considering that the reactivity of the active sites is different because of varying configurations cis, trans, vinyl, and styryl. From the reaction scheme expressions to rate of monomers consumption, microstructure and dyad formation were obtained. With the first-order Markov model, the expressions for the fraction of active sites and dyad distribution as a function of the conditional probabilities were obtained. Therefore, the model proposed is different to kinetic models previously reported, because it allows obtaining the parameters kinetic in order to know the distribution of the isomeric species presents in the copolymerization of butadiene and styrene, and the intrinsic reactivity of configurational active sites. The rate constants were determined by fitting to the conversion and dyad experimental data using the nonlinear least square method. The experimental data reported in the literature, monomer conversion and microstructure, in addition to dyad sequence distribution were correctly predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

(C):

active sites cis

FC :

cis isomer formation

FT :

trans isomer formation

FV :

vinyl isomer formation

FS :

styrene isomer formation

FCC :

dyad formation cis-cis

FCT :

dyad formation cis-trans

FCV :

dyad formation cis-vinyl

FCSV :

dyad formation cis-styrene

FTC :

dyad formation trans-cis

FTT :

dyad formation trans-trans

FTV :

dyad formation trans-vinyl

FTS :

dyad formation trans-styrene

FVC :

dyad formation vinyl-cis

FVT :

dyad formation vinyl-trans

FVV :

dyad formation vinyl-vinyl

FVS :

dyad formation vinyl-styrene

FSC :

dyad formation styrene-cis

FST :

dyad formation styrene-trans

FSV :

dyad formation styrene-vinyl

FSS :

dyad formation styrene-styrene

Fij :

total quantity of the ij dyad

i:

active site that reacts with a butadiene molecule

[I]:

initiator concentration

j:

ending live isomer resulting from this reaction

kij :

rate constant

kiC, kiT, kiV, and kiS :

rate constants of the initiation

M1 :

butadiene monomer

M2 :

styrene monomer

Р:

\( {\hbox{matrix }} = \left[ {\begin{array}{*{20}{c}} {{P_{CC}}} & {{P_{CT}}} & {{P_{CV}}} \\{{P_{TC}}} & {{P_{TT}}} & {{P_{TV}}} \\{{P_{VC}}} & {{P_{VT}}} & {{P_{VV}}} \\\end{array} } \right] \)

Pij :

conditional probability of the active sites

[Pc], [PT] [PV], [PS]:

concentration of active sites

Pc1,0,0,0, PT 0,1,0,0, PV 0,0,1,0 :

active sites with one monomeric unit with the negative

PS 0,0,0,1 :

charge located in the cis, trans and vinyl isomer respectively

PX a,b,d,m :

living polymer with the negative charge located in the isomer X, (X = C, T, V or S) with a, b and d units of cis, trans, vinyl and styryl respectively

val:

equality: rCT rTV rVC = rTC rCV rVT

rij :

reactivity ratios

Wi :

fraction of active sites

W :

vector (Wc, WT, Wv, Ws)

XCj, XTj, XVj, XSj :

butadiene conversion converted to the dyad Cj, Tj, Vj, Sj.

References

  1. Kang J, Poulton J (1997) High trans-1,4 polybutadiene and catalyst and process for preparing crystalline high trans 1,4 polybutadiene. U.S. Pat. 5 596 053

  2. Sandstorm PH, Roennau RB (2000) Method of preparing trans polybutadiene blend for use in tires. U.S. Pat. 6 024 146

  3. Lynch T (2000) Synthesis of 1, 4-trans-polybutadiene using lanthanide organic acid salt catalyst. U.S. Pat. 6 184 168

  4. Rivera M, Herrera-Nájera R, Ríos-Guerrero L (2006) Structure and properties of model polybutadienes and HIPS: effect of rubber microstructure on HIPS dynamic mechanical properties. J Elast Plast 38(2):133–146

    Article  CAS  Google Scholar 

  5. Vargas MA, Chávez AE, Manero O, Herrera R (2005) Asphalt modified by partially hydrogenated SBS tri-block copolymers. Rubber Chem Tecnol 78(4):620–643

    Article  CAS  Google Scholar 

  6. Morton M (1983) Anionic polymerization: Principles and practices. Academic, New York

    Google Scholar 

  7. Hsieh HL, Quirk RP (1996) Anionic polymerization: Principles and practical applications. Marcel Dekker, New York

    Google Scholar 

  8. Benvenuta-Tapia JJ, Tenorio-López JA, Herrera-Nájera R, Ríos-Guerrero L (2010) Synthesis and distribution of structural units–thermal property relationship of random and block butadiene-styrene copolymers with high trans 1, 4 units content produced using an initiator composed of alkyl aluminum, n-butyl lithium, and barium alkoxide. J Appl Polym Sci 116:3103–3110

    Article  CAS  Google Scholar 

  9. Kelley DJ, Tobolsky AV (1959) Anionic copolymerization of isoprene and styrene. J Am Chem Soc 81:1597–1600

    Article  CAS  Google Scholar 

  10. Johnson AF, Worsfold DJ (1965) Anionic copolymerization of styrene and butadiene. Makromol Chem 85:273–279

    Article  CAS  Google Scholar 

  11. Zelinski RP (1961) Preparation of copolymers in the presence of an organolithium catalyst and a solvent mixture comprising a hydrocarbon and an ether, thioether or amine. US Patent 2 975 160

  12. Hsieh LH, Wofford CF (1969) J Polym Sci A1(7):461

    Google Scholar 

  13. Halasa AF, Hsu WL (2002) Synthesis of high vinyl elastomers via mixed organolithium and sodium alkoxide in the presence of polar modifier. Polymer 43:7111

    Article  CAS  Google Scholar 

  14. Halasa AF, Schulz DN, Tate DP, Mochel VD, Stone FG, West R (1980) Organolithium catalysis of olefin and diene polymerization. Adv Organomet Chem 18(55):97

    Google Scholar 

  15. Dotson NA, Galván R, Lawrence RL, Tirrell M (1996) Polymerization process modeling. VHC, New York

    Google Scholar 

  16. Bywater S, Firat Y, Black PE (1984) Microstructures of polybutadienes prepared by anionic polymerization in polar solvents. Ion-pair and solvent effects. J Polym Sci Polym Chem Ed 22(3):669–672

    Article  CAS  Google Scholar 

  17. Halasa FA, Mochel VD, Fraenkel G (1981) Anionic polymerization. ACS Symp Ser 166(26):409–426

    Article  CAS  Google Scholar 

  18. Chang CC, Halasa AF, Miller JW, Hsu L (1994) Modelling studies of the controlled anionic copolymerization of butadiene and styrene. Polym Int 33(2):151–159

    Article  CAS  Google Scholar 

  19. Sato H, Takebayashi K, Tanaka Y (1987) Analysis of carbon-13NMR of polybutadiene by means of low molecular weight model compounds. Macromolecules 20:2418

    Article  CAS  Google Scholar 

  20. Tanaka Y, Sato H, Ogawa M, Hatada K, Yoshio T (1974) Determination of sequence distribution in 1, 4-polybutadiene by 13C-NMR spectra. Polym Lett Ed 12(7):369–373

    Article  CAS  Google Scholar 

  21. Benvenuta-Tapia JJ, Tenorio-López JA, Montiel C, Ríos-Guerrero L (2008) Kinetics of the Anionic Polymerization of Buta-1, 3-diene Considering Different Reactivities of the cis, trans and vinyl Structural Units. Macromol React Eng 22(5):436–451

    Google Scholar 

  22. Benvenuta-Tapia JJ, Tenorio-López JA, Herrera R (2008) Kinetics of the anionic polymerization of 1, 3-butadiene using an initiator composed of alkyl aluminium, n-butyllithium and barium alkoxide to produce high trans-1, 4-polybutadiene. Macromol React Eng 2(3):222–232

    Article  Google Scholar 

  23. Benvenuta-Tapia JJ, Tenorio-López JA, Cuevas-Díaz MC (2009) Kinetics approximation considering different reactivities of the structural units formed by the anionic copolymerization of 1, 3-butadiene and styrene using Al/Li/Ba as initiator. Macromol React Eng 3(8):473–485

    Article  Google Scholar 

  24. Price FP (1970) Markov chains and Monte Carlo calculations in polymer science. Marcel Dekker, New York

    Google Scholar 

  25. Boeing JL (1980) Chemical microstructure of polymer chains. Wiley, New York

    Google Scholar 

  26. Chang CC, Miller JW, Schorr GR (1990) Fundamental modeling in anionic polymerization processes. J Appl Polym Sci 39(11–12):2395–2417

    Article  CAS  Google Scholar 

  27. Sutton TL, MacGregor JF (1977) The analysis and design of binary vapour-liquid equilibrium experiments. Part I: Parameter estimation and consistency tests. Can J Chem Eng 55(5):602–608

    Article  CAS  Google Scholar 

  28. Valvassori A, Sartori G (1967) Adv Polym Sci 5:28

    Article  CAS  Google Scholar 

  29. Chang CC, Halasa AF, Miller JW (1993) The reaction engineering of the anionic polymerization of isoprene. J Appl Polym Sci 47(9):1589–1599

    Article  CAS  Google Scholar 

  30. Halasa AF, Hsu WL (2002) Synthesis of high vinyl elastomers via mixed organolithium and sodium alkoxide in the presence of polar modifierPolymer 43(5):7111–7118

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Benvenuta-Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tenorio-López, J.A., Benvenuta-Tapia, J.J., Castillo-Hernández, N.E. et al. Pseudokinetics for the copolymerization of butadiene and styrene produced using n-butyl lithium and N,N,N′,N′-tetramethylethylenediamine, considering different reactivities of the structural units. J Polym Res 18, 927–938 (2011). https://doi.org/10.1007/s10965-010-9490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9490-5

Keywords

Navigation