Skip to main content
Log in

Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Alcohol-specific superabsorbing gels (super-alcogels) based on non-neutralized acrylic acid (AA, 60–94 mol%) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) were prepared via solution polymerization in water. Polyethylene glycol dimethacrylate and potassium persulfate were used as crosslinker and initiator, respectively. Characterization of samples was performed using FTIR, 1H-NMR and thermomechanical analyses. Glass transition temperature and modulus of dried samples were found to be directly changed with their AA content. The gels exhibited enormous ability for absorbing and retaining a variety of mono- and poly-hydric alcohols. For example, in lieu of one gram of a typical sample composing 25 mol% AMPS, its absorption capacity was measured to be 53.0 g methanol, 42.1 g ethanol, 12.1 g n-propanol, 3.4 g iso-propanol, 41.2 g ethylene glycol, 20.7 g propylene glycol, 37.8 g 1,3-propanediol and 32.9 g glycerol. The absorbencies were superior to those of a known commercial poly(AA) sample, Carbopol. The alcohol absorbency was improved with increase of AMPS incorporated. It was recognized to be dependant on the alcohol characteristics such as H-bonding ability, OH/C ratio, electronic features (e.g. dielectric constant), steric hindrance of the neighboring groups of the solvent OH group, as well as the solvent viscosity. Normal phase transitions were observed in the gel swelling behavior in the alcohol-water binary mixtures. Rheological measurements of the water-swollen gel showed that more AMPS content resulted in gels with inferior storage modulus. All the empirical observations were discussed based on the related physicochemical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zohuriaan-Mehr MJ, Kabiri K (2008) Iran Polym J 17:451

    CAS  Google Scholar 

  2. Yavari-Gohar MR, Kabiri K, Zohuriaan-Mehr MJ, Hashemi SA (2010) J Polym Res 17:151

    Google Scholar 

  3. Li A, Wang A, Chen J (2004) J Appl Polym Sci 94:1869

    Article  CAS  Google Scholar 

  4. Chen J, Shen J (2000) J Appl Polym Sci 75:1331

    Article  CAS  Google Scholar 

  5. Barry BW, Meyer MC (1979) Int J Pharmaceut 2:27

    Article  CAS  Google Scholar 

  6. Zhao Q, Liu C (2007) J Appl Polym Sci 105:3458

    Article  CAS  Google Scholar 

  7. Kiritoshi Y, Ishihara K (2002) J Biomater Sci Polymer Edn 13:213

    Article  CAS  Google Scholar 

  8. Fukunaga Y, Hayashi M, Satoh M (2007) J Polym Sci Part B: Polym Phys 45:1166

    Article  CAS  Google Scholar 

  9. Yang H, Song W, Zhuang Y, Deng X (2003) Macromol Biosci 3:400

    Article  CAS  Google Scholar 

  10. Kabiri K, Faraji-Dana S, Zohuriaan-Mehr MJ (2005) Polym Adv Technol 16:659

    Article  CAS  Google Scholar 

  11. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ (2008) J Appl Polym Sci 110:3420

    Article  CAS  Google Scholar 

  12. Ramazani-Harandi MJ, Zohuriaan-Mehr MJ, Yousefi AA, Ershad-Langroudi A, Kabiri K (2006) Polym Test 25:470

    Article  CAS  Google Scholar 

  13. Omidian H, Zohuriaan-Mehr MJ, Bouhendi H (2003) Int J Polym Mater 52:307

    Article  CAS  Google Scholar 

  14. Cascone MG (1997) Polym Int 43:55

    Article  CAS  Google Scholar 

  15. Ahn JS, Choi HK, Cho CS (2001) Biomaterials 22:923

    Article  CAS  Google Scholar 

  16. Gomez-Carracedo A, Alvarez-Lorenzo C, Gomez-Amoza JL, Concheiro A (2004) Int J Pharmac 274:233

    Article  CAS  Google Scholar 

  17. Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M (2009) Polym Int 2009(58):1252

    Article  Google Scholar 

  18. He Y, Zhu B, Inoue Y (2004) Prog Polym Sci 29:1021

    Article  CAS  Google Scholar 

  19. Dong J, Ozaki Y, Nakashima K (1997) Macromolecules 30:1111

    Article  CAS  Google Scholar 

  20. Krumova M, López D, Benavente R, Mijangos C, Peren JM (2000) Polymer 41:9265

    Article  CAS  Google Scholar 

  21. Gerhartz W, Yamamoto YS, Campbell FT, Pfeffekorn R, Rounsaville JF (eds) (1985) VCH, Weinheim, A1, pp 279–320

  22. Lide DR (2005) CRC handbook of chemistry and physics, 86th edn. Taylor & Francis, Boca Raton, p. 15–13 to 15–22

    Google Scholar 

  23. Gokel GW (2004) Dean’s handbook of organic chemistry, 2nd edn. New York, McGraw-Hill, p 4.57

    Google Scholar 

  24. Nishiyama Y, Satoh M (2000) J Polym Sci Part B Polym Phys 38:2791

    Article  CAS  Google Scholar 

  25. Morrison RT, Boyd RN (1983) Organic chemistry, Chap 10, 4th edn. Allyn & Bacon Inc., Boston, 10

    Google Scholar 

  26. Carey FA, Sundberg RJ (2007) Advanced organic chemistry, part A: structure and mechanism, Springer

  27. Rodehed C, Ranby B (1986) Polymer 27:313

    Article  CAS  Google Scholar 

  28. Kabiri K, Zohuriaan-Mehr MJ, Mirzadeh H, Kheirabadi M (2010) J Polym Res 17:203

    Google Scholar 

  29. Ono T, Sugimoto T, Shinkai S, Sada K (2007) Nature Mater 6:429

    Article  CAS  Google Scholar 

  30. Hu X, Fan J, Yue CY (2001) J Appl Polym Sci 80:2437

    Article  CAS  Google Scholar 

  31. Katchalsky A, Eisenberg H (1951) J Polym Sci 6:145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Kabiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabiri, K., Lashani, S., Zohuriaan-Mehr, M.J. et al. Super alcohol-absorbent gels of sulfonic acid-contained poly(acrylic acid). J Polym Res 18, 449–458 (2011). https://doi.org/10.1007/s10965-010-9436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9436-y

Keywords

Navigation