Skip to main content
Log in

Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polylactide (PLA) was mixed with poly(vinylidene fluoride) (PVDF) and spun into nonwoven mats via electrospinning technique using a co-solvent system of N,N-dimethylformamide (DMF) and acetone. The resulting mats were subject to characterization including contact angle, infrared spectrometry (IR), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), tensile test, and examined using scanning electron microscope (SEM). With such a co-solvent system, the viscosity was measured, and the average fiber diameter achievable without beads for PLA, PLA/PVDF, and PVDF mats was 252 nm, 209 nm, and 355 nm, respectively. Infrared spectra showed that electrospinning can induce crystallization of PVDF. Both α and β phases were observed from the IR and WAXD results. From the results of DSC, the PLA/PVDF mats exhibited higher melting temperature but lower crystallinity than both PLA and PVDF. The tensile strength of PLA/PVDF was lower than those of PLA and PVDF. By applying stretching during eletrospinning, the ratio of strength in machine direction (MD) to that in cross direction (CD) was increased to 2. In addition, electrospun PLA/PVDF mats exhibited higher cell proliferation for L929 fibroblasts than both PLA and PVDF mats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li D, Xia Y (2004) Adv Mater 16(14):1151. doi:10.1002/adma.200400719

    Article  CAS  Google Scholar 

  2. Wong SC, Baji A, Leng S (2008) Polymer 49:4713. doi:10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  3. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223. doi:10.1016/S0266-3538(03)00178-7

    Article  CAS  Google Scholar 

  4. You Y, Min BM, Lee SJ, Lee TS, Park WH (2005) J Appl Polym Sci 95:193. doi:10.1002/app. 21116

    Article  CAS  Google Scholar 

  5. Ramdhanie LI, Aubuchon SR, Boland ED, Knapp DC, Barnes CP, Simpson DG, Wnek GE, Bowlin GL (2006) Polym J 38(11):1137. doi:10.1295/polymj.PJ2006062

    Article  CAS  Google Scholar 

  6. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) J Control Release 81:57. doi:10.1016/S0168-3659(02)00041-X

    Article  CAS  Google Scholar 

  7. Zong X, Bien H, Chung CY, Yin L, Fang D, Hsiao BS, Chu B, Entcheva E (2005) Biomaterials 26:5330. doi:10.1016/j.biomaterials.2005.01.052

    Article  CAS  Google Scholar 

  8. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Polymer 43:4403. doi:10.1016/S0032-3861(02)00275-6

    Article  CAS  Google Scholar 

  9. Sun B, Duan B, Yuan X (2006) J Appl Polym Sci 102:39. doi:10.1002/app. 24297

    Article  CAS  Google Scholar 

  10. Iwatake A, Nogi M, Yano H (2008) Compos Sci Technol 68:2103. doi:10.1016/j.compscitech.2008.03.006

    Article  CAS  Google Scholar 

  11. You Y, Lee SW, Lee SJ, Park WH (2006) Mater Lett 60:1331. doi:10.1016/j.matlet.2005.11.022

    Article  CAS  Google Scholar 

  12. RJr G (2006) J Appl Polym Sci 100:3272. doi:10.1002/app. 23137

    Article  Google Scholar 

  13. Zhao Z, Li J, Yuan X, Li X, Zhang Y, Sheng J (2005) J Appl Polym Sci 97:466. doi:10.1002/app. 21762

    Article  CAS  Google Scholar 

  14. Koombhongse S, Liu W, Reneker DH (2001) J Polym Sci Polym Phys 39:2598. doi:10.1002/polb.10015

    Article  CAS  Google Scholar 

  15. Mazzei R, Smolko E, Tadey D, Gizzi L (2000) Nucl Instrum Methods B 170:419. doi:10.1016/S0168-583X(00)00243-3

    Article  CAS  Google Scholar 

  16. Chen MH, Hsu YH, Lin CP, Chen YJ, Young TH (2005) J Biomed Mater Res 74:254. doi:10.1002/marc.200700544

    Article  Google Scholar 

  17. Rodrigues MT, Gomes ME, Mano JF, Reis RL (2008) Mat Sci Forum 587:72

    Article  Google Scholar 

  18. Liu TY, Lin WC, Huang LY, Chen SY, Yang MC (2005) Polym Adv Technol 16:413. doi:10.1002/pat.592

    Article  Google Scholar 

  19. Zheng J, He A, Li J, Han CC (2007) Macromol Rapid Commun 28:2159. doi:10.1002/marc.200700544

    Article  CAS  Google Scholar 

  20. Yee WA, Kotaki M, Liu Y, Lu X (2007) Polymer 48:512. doi:10.1016/j.polymer.2006.11.036

    Article  CAS  Google Scholar 

  21. Chen Y, Kim H (2009) Appl Surf Sci 255(15):7073. doi:10.1016/j.apsusc.2009.03.043

    Article  CAS  Google Scholar 

  22. Zheng Z, Gu Z, Huo R, Ye Y (2009) Appl Surf Sci 255(16):7263. doi:10.1016/j.apsusc.2009.03.084

    Article  CAS  Google Scholar 

  23. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Biomacromolecules 7:3316. doi:10.1021/bm060786e

    Article  CAS  Google Scholar 

  24. Jiang L, Wolcott MP, Zhang J (2006) Biomacromolecules 7:199. doi:10.1021/bm050581q

    Article  Google Scholar 

  25. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208. doi:10.1088/0957-4484/16/2/005

    Article  CAS  Google Scholar 

  26. Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya H, Tanioka A (2006) J Polym Sci Polym Phys 44:779. doi:10.1002/polb.20737

    Article  CAS  Google Scholar 

  27. Zeng J, Chen X, Liang Q, Xu X, Jing X (2004) Macromol Biosci 4:1118. doi:10.1002/mabi.200400092

    Article  CAS  Google Scholar 

  28. Inai R, Kotaki M, Ramakrishna S (2005) J Polym Sci Polym Phys 43:3205. doi:10.1002/polb.20457

    Article  CAS  Google Scholar 

  29. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Polymer 42:9955. doi:10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  30. Hooqsteen W, Postema AR, Penninqs AJ, Brinke G, Zuqenmaier P (1990) Macromolecules 23:634

    Article  Google Scholar 

  31. Zhang G, Zhang J, Wang S, Shen D (2003) J Polym Sci Polym Phys 41:23. doi:10.1002/polb.10353

    Article  CAS  Google Scholar 

  32. Li Y, Shimizu H (2007) Macromol Biosci 7:921. doi:10.1002/mabi.200700027

    Article  CAS  Google Scholar 

  33. Sung HW, Chen CN, Huang RN, Hsu JC, Chang WH (2000) Biomaterials 21:1353. doi:10.1016/S0142-9612(00)00017-X

    Article  CAS  Google Scholar 

  34. Li W, Laurencin CT, Cateson EJ, Tuan RS, Ko FK (2002) J Biomed Mater Res 60:613. doi:10.1002/jbm.10167

    Article  CAS  Google Scholar 

  35. Chen M, Patra PK, Warner SB, Bhowmick S (2007) Tissue Eng 13(3):579. doi:10.1089/ten.2006.0205

    Article  CAS  Google Scholar 

  36. Nagahama K, Nishimura Y, Ohya Y, Ouchi T (2007) Polymer 48(9):2649. doi:10.1016/j.polymer.2007.03.017

    Article  CAS  Google Scholar 

  37. Park A, Cima LG (1996) J Biomed Mater Res 31:117. doi:10.1002/jbm.1996.820310102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chien Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HC., Tsai, CH. & Yang, MC. Mechanical properties and biocompatibility of electrospun polylactide/poly(vinylidene fluoride) mats. J Polym Res 18, 319–327 (2011). https://doi.org/10.1007/s10965-010-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9421-5

Keywords

Navigation