Skip to main content
Log in

Synthesis and characterization of pH- and thermoresponsive Poly(N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biodegradable cross-linker N-maleyl chitosan (N-MACH) was synthesized with chitosan (CS) and maleic anhydride (MA) by acylation. With N-MACH cross-linker, a series of cross-linked poly(N-isopropylacrylamide-co-itaconic acid) [P(NIPAAm-co-IA)] hydrogels were prepared, and their pH-and temperature-responsive behaviors, water contents, swelling/deswelling kinetics were investigated. By alternating the NIPAAm/IA weight ratios, hydrogels had the volume phase transition temperature (VPTT) changed from 33 to 38 °C, whereas cross-linking density did not affect the VPTT apparently. The water content of hydrogels was controlled by the monomer weight ratios of NIPAAm/IA, swelling media, and the cross-linking density. The results of the influence of pH value on the swelling behaviors showed that the minimum swelling ratios of the hydrogels appeared in neutral buffer solution, which was attributed to chemical composition of the hydrogels and the swelling media. In the swelling/deswelling kinetics, all the dried hydrogels exhibited fast swelling within 480 min and fast deswelling within 20 min, which was independent of the content of IA and cross-linker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen GH, Hoffman AS (1995) Nature 373(5):49–52

    Article  CAS  Google Scholar 

  2. Qu X, Wirse´n A, Albertsson AC (2000) Polymer 41(12):4589–4598

    Article  CAS  Google Scholar 

  3. Suzuki A, Tanaka T (1990) Nature 346:345–347

    Article  CAS  Google Scholar 

  4. Miyata T, Asami N, Uragami T (1999) Nature 399(6738):766–769

    Article  CAS  Google Scholar 

  5. Serizawa T, Wakita K, Akashi M (2002) Macromolecules 35(1):10–12

    Article  CAS  Google Scholar 

  6. Kim JH, Lee SB, Kim SJ, Lee YM (2002) Polymer 43:7549–7558

    Article  CAS  Google Scholar 

  7. Ju HK, Kim SY, Kim ST, Lee YM (2002) J Appl Polym Sci 83:1128–1139

    Article  CAS  Google Scholar 

  8. Taylor LD, Cerankowski LD (1975) J Polym Sci Polym Chem Ed 13:2551–2570

    Article  CAS  Google Scholar 

  9. Zhang J, Pelton R, Deng YL (1995) Langmuir 11(6):2301–2302

    Article  CAS  Google Scholar 

  10. Shibayama M, Tanaka T (1993) Advances in Polymer Science. Springer-Verlag, Berlin

    Google Scholar 

  11. Stayton PS, Shimobji T, Long C, Chilkoti A, Chen GH, Harris JM, Hoffman AS (1995) Nature 378:472–474

    Article  CAS  Google Scholar 

  12. Ramkissoon-Ganorkar C, Liu F, Baudys M, Kim SW (1999) J Control Release 59:287–298

    Article  CAS  Google Scholar 

  13. Gutowska A, Bae YH, Jacobs H, Mohammad F, Mix D, Feijen J, Kim SW (1995) J Biomed Mater Res 29(7):811–821

    Article  CAS  Google Scholar 

  14. Vakkalanka SK, Brazel CS, Peppas NA (1996) J Biomater Sci Polym Ed 8:119–129

    Article  CAS  Google Scholar 

  15. Osada Y, Okuzaki H, Hori H (1992) Nature 355:242–244

    Article  CAS  Google Scholar 

  16. Tasdelen B, Kayaman-Apohan N, Guven O, Baysal BM (2004) Int J Pharm 278:343–351

    Article  CAS  Google Scholar 

  17. Sen M, Yakar A (2001) Int J Pharm 228:33–41

    Article  CAS  Google Scholar 

  18. Tomic SL, Suljovrujic EH, Filipovic JM (2006) Polymer Bulletin 57:691–702

    Article  CAS  Google Scholar 

  19. Roberts GAF (1992) Chitin Chemistry. MacMillan Press Ltd, London

    Google Scholar 

  20. Chandy T, Sharma CP (1990) Biomat Art Cells Art Org 18:1–24

    CAS  Google Scholar 

  21. Kas HS (1997) J Microencapsul 14(6):689–711

    Article  CAS  Google Scholar 

  22. Kubota N, Kikuchi Y (1998) In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility, 595–628. New York, Marcel Dekker

    Google Scholar 

  23. Yu YQ, Li ZZ, Tian HJ, Zhang SS, Ouyang PK (2007) Colloid Polym Sci 285:1553–1560

    Article  CAS  Google Scholar 

  24. Jiang X, Chen L, Zhong W (2003) Carbohydrate Polymers 54:457–463

    Article  CAS  Google Scholar 

  25. Yu YQ, Xu Y, Ning HS, Zhang SS (2008) Colloid Polym Sci 286:1165–1171

    Article  CAS  Google Scholar 

  26. Zhang XZ, Yang YY, Wang FJ, Chung TS (2002) Langmuir 18(6):2013–2018

    Article  CAS  Google Scholar 

  27. Huang X, Lowe TL (2005) Biomacromolecules 6(4):2131–2139

    Article  CAS  Google Scholar 

  28. Ma JH, Xu YJ, Zhang QS, Zha LS, Liang BR (2007) Colloid Polym Sci 285:479–484

    Article  CAS  Google Scholar 

  29. Wu XS, Hoffman AS, Yager P (1992) J Polym Sci A Polym Chem 30:2121–2129

    Article  CAS  Google Scholar 

  30. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  31. Bae YH, Okano T, Kim SW (1992) J Polym Sci Polym Phys Ed 28:923–936

    Google Scholar 

Download references

Acknowledgment

This study was supported by the National Natural Science Foundation of China (No. 20876081), and the Science Foundation of Shandong Province (No.Y2006B10), Qingdao Science and Technology Program for basic research projects (09-1-3-33-JCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Li, Y., Liu, L. et al. Synthesis and characterization of pH- and thermoresponsive Poly(N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan. J Polym Res 18, 283–291 (2011). https://doi.org/10.1007/s10965-010-9417-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9417-1

Keywords

Navigation