Skip to main content

Advertisement

Log in

Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of high molecular weight copolymers based on poly(L-lactic acid) (PLLA) as the biodegradable aliphatic segments, poly(butylene terephthalate) (PBT) as the rigid aromatic segments and hydrophilic poly(ethylene glycol) (PEG) as the soft segments were synthesized with the aim of developing novel polymer materials which could combine high physical properties with good biodegradability. Via direct melt polycondensation of terephthalic acid (TPA), 1,4-butanediol (BDO), poly(L-lactic acid) oligomer (OLLA) and PEG, biodegradable aliphatic/aromatic copoly(ester-ether)s, poly(butylene terephthalate-co-lactate-co-ethylene glycol) (PBTLG), were prepared. The effect of the introduction of PEG soft segments on the synthesis, mechanical properties and thermal stabilities as well as the degradation behaviors of the final copolymers was investigated. When the PEG units were incorporated into the polymer main-chains, the weight-average molecular weight of the copolymers increased from 53,700 g/mol to 177,000 g/mol and the tensile strength (σ) improved by nearly two times from 6.5 MPa to 12.8 MPa for PBTLG1000-0.5. The glass-transition temperature (T g) gradually decreased from 26.9 °C down to −5.5 °C and a depression of melting temperature was observed with the increase of PEG content. According to the in vitro hydrolytic degradation observation, all of the copolymers underwent significant degradation in phosphate buffer solution at 37 °C and the water absorption as well as the degradation rate of PBTLGs displayed a strong dependency on the PEG content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vert M (2007) Prog Polym Sci 32:755

    Article  CAS  Google Scholar 

  2. Nair LS, Laurencin CT (2007) Prog Polym Sci 32:762

    Article  CAS  Google Scholar 

  3. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Adv Drug Deliver Rev 59:187

    Article  CAS  Google Scholar 

  4. Wu YD, Liu CB, Zhao XY, Xiang JN (2008) J Polym Res 15:181

    Article  Google Scholar 

  5. Wang LY, Wang YJ, Ren L (2008) J Appl Polym Sci 109:1310

    Article  CAS  Google Scholar 

  6. Wei XW, Gong CY, Gou MY, Fu SZ, Guo QF, Shi S, Luo F, Guo G, Qiu LY, Qian ZY (2009) Int J Pharm 381:1

    Article  CAS  Google Scholar 

  7. Qian ZY, Li S, He Y, Liu XB (2004) Polym Degrad Stabil 83:93

    Article  CAS  Google Scholar 

  8. Malda J, Woodfield TBF, van der Vloodt F, Wilson C, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2005) Biomaterials 26:63

    Article  CAS  Google Scholar 

  9. Lamme EN, Druecke D, Pieper J, May PS, Kaim P, Jacobsen F, Steinau HU, Steinstraesser L (2008) J Biomater Appl 22:309

    Article  CAS  Google Scholar 

  10. Chao GT, Fan LY, Jia WJ, Qian ZY, Gu YC, Liu CB, Ni XP, Li J, Deng HX, Gong CY et al (2007) J Mater Sci-Mater M 18:449

    Article  CAS  Google Scholar 

  11. Bezemer JM, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J (1999) J Control Release 62:393

    Article  CAS  Google Scholar 

  12. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, Feijen J, van Blitterswijk CA (2000) J Control Release 64:179

    Article  CAS  Google Scholar 

  13. van Dijkhuizen-Radersma R, Peters F, Stienstra NA, Grijpma DW, Feijen J, de Groot K, Bezemer JM (2002) Biomaterials 23:1527

    Article  Google Scholar 

  14. van Dijkhuizen-Radersma R, Hesseling SC, Kaim PE, de Groot K, Bezemer JM (2002) Biomaterials 23:4719

    Article  Google Scholar 

  15. Zhang Y, Feng ZG, Zhang AY (2003) Polym Int 52:1351

    Article  CAS  Google Scholar 

  16. Wang LC, Xie ZG, Bi XJ, Wang X, Zhang AY, Chen ZQ, Zhou JY, Feng ZG (2006) Polym Degrad Stabil 91:2220

    Article  CAS  Google Scholar 

  17. Auras R, Harte B, Selke S (2004) Macromol Biosci 4:835

    Article  CAS  Google Scholar 

  18. Wang SG, Cai Q, Bei JZ (2003) Macromolecular Symposia 195:263

    Article  CAS  Google Scholar 

  19. Drumright RE, Gruber PR, Henton DE (2000) Adv Mater 12:1841

    Article  CAS  Google Scholar 

  20. Maharana T, Mohanty B, Negi YS (2009) Prog Polym Sci 34:99

    Article  CAS  Google Scholar 

  21. Du J, Fang YY, Zheng YB (2007) Polymer 48:5541

    Article  CAS  Google Scholar 

  22. Muller RJ, Kleeberg I, Deckwer WD (2001) J Biotechnol 86:87

    Article  CAS  Google Scholar 

  23. Olewnik E, Czerwinski W, Nowaczyk J (2007) Polym Degrad Stabil 92:24

    Article  CAS  Google Scholar 

  24. Haderlein G, Schmidt C, Wendorff JH, Greiner A (1997) Polym Adv Technol 8:568

    Article  CAS  Google Scholar 

  25. Chen YW, Wombacher R, Wendorff JH, Visjager J, Smith P, Greiner A (2003) Biomacromolecules 4:974

    Article  CAS  Google Scholar 

  26. Chen YW, Yang Y, Su JY, Tan LC, Wang Y (2007) React Funct Polym 67:396

    Article  CAS  Google Scholar 

  27. Olewnik E, Czerwinski W, Nowaczyk J, Sepulchre MO, Tessier M, Salhi S, Fradet A (2007) Eur Polym J 43:1009

    Article  CAS  Google Scholar 

  28. Wang BT, Zhang Y, Song PA, Guo ZH, Chen J, Fang ZP (2009) Chinese J Polym Sci under final editing. doi:10.1007/s10118-010-9032-y

  29. Zhang Y, Feng Z, Feng Q, Cui F (2004) Eur Polym J 40:1297

    Article  CAS  Google Scholar 

  30. Pepic D, Zagar E, Zigon M, Krzan A, Kunaver M, Djonla J (2008) Eur Polym J 44:904

    Article  CAS  Google Scholar 

  31. Deschamps AA, Grijpma DW, Feijen J (2001) Polymer 42:9335

    Article  CAS  Google Scholar 

  32. Chen Y, Zhu X, Tan L, Su J (2008) J Appl Polym Sci 108:2171

    Article  CAS  Google Scholar 

  33. Ki HC, Park OO (2001) Polymer 42:1849

    Article  CAS  Google Scholar 

  34. Beumer GJ, Vanblitterswijk CA, Ponec M (1994) J Biomed Mater Res 28:545

    Article  CAS  Google Scholar 

  35. Papadaki M, Mahmood T, Gupta P, Claase MB, Grijpma DW, Riesle J, van Blitterswijk CA, Langer R (2001) J Biomed Mater Res 54:47

    Article  CAS  Google Scholar 

  36. Radder AM, Leenders H, Vanblitterswijk CA (1995) Biomaterials 16:507

    Article  CAS  Google Scholar 

  37. Bulstra SK, Geesink RGT, Bakker D, Bulstra TH, Bouwmeester SJM, vander Linden AJ (1996) J Bone Joint Surg-Br 78B:892

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the Natural Science Foundation of Ningbo (2007A610030) and Scientific Special Fund of Zhejiang Province (2008C11092-2) were greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Zhang, Y., Guo, Z. et al. Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior. J Polym Res 18, 187–196 (2011). https://doi.org/10.1007/s10965-010-9406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9406-4

Keywords

Navigation