Skip to main content
Log in

Electron beam processing of LDPE/EVA/PCR ternary blends: radiation sensitivity evaluation and physico-mechanical characterization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

LDPE/EVA/PCR blends having fixed percentage of PCR were prepared by melt mixing and irradiated to different radiation doses using electron beam. Gel fraction and crosslinking density of the blends were found to increase with increase in EVA content in the formulation, suggesting higher radiation sensitivity of EVA. The heat of mixing and polymer-polymer interaction parameter indicated better miscibility between EVA/PCR than between LDPE/PCR and LDPE/EVA. Dynamic mechanical properties of the blends were found to significantly vary with the variation in the EVA fraction in the blends. In the composition range studied the storage modulus decreased from 3.8 × 108 to ∼1 × 108 Pa at strain amplitude of 5 × 10−6 m. The experimentally obtained data deviated significantly from both the series as well as parallel model. The bulk density showed a positive deviation from additive rule. The X-ray diffraction pattern of the blends revealed reduction in the crystallinity of LDPE on blend formation. DSC thermograms of blends did not indicate any significant shift in the melting peaks, indicating immiscibility of LDPE and EVA domains in the presence of PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. George SC, Ninan KN, Greonincks G, Thomas S (2000) J Appl Polym Sci 78(6):1280–1303

    Article  CAS  Google Scholar 

  2. McDonel ET, Baranwal KC, Andries JC (1978) In: Paul DR, Newman S (eds) Polymer blends, vol 2. New York, Academic Press

    Google Scholar 

  3. Uthaman RN, Pandurangan A, Abdul Majeed SSM (2007) J Polym Res 14(6):441–447

    Article  CAS  Google Scholar 

  4. Kresge EN (1991) Rubber Chem Technol 64(3):469–479

    CAS  Google Scholar 

  5. Ochigbo SS, Luyt AS, Focke WW (2009) J Mater Sci 44:3248–3254

    Article  CAS  Google Scholar 

  6. Lu ML, Chiou KC, Chang FC (1996) J Polym Res 3(2):73–82

    Article  CAS  Google Scholar 

  7. Jiang WH, Han SJ (1998) Eur Polym J 34(11):1579–1584

    Article  CAS  Google Scholar 

  8. Zhou S, Wang Z, Hu Y (2009) J Polym Res 16(2):173–181

    Article  CAS  Google Scholar 

  9. Wang L, Huang B (1990) J Polym Sci: Part B 28:937–949

    Article  CAS  Google Scholar 

  10. Thavamani P, Khastgir D (1997) J Elastomers Plast 29(2):124–147

    CAS  Google Scholar 

  11. Placek V, Bartonıcek B, Hnat V, Otahal B (2003) Nucl Instr and Meth B 208:448–453

    Article  CAS  Google Scholar 

  12. Dick CM, Liggat JJ, Snape CE (2001) Polym Degrad Stab 74(3):397–405

    Article  CAS  Google Scholar 

  13. Ismail H, Ahmad Z, Ishak ZAM (2003) Polym Test 22(2):179–185

    Article  CAS  Google Scholar 

  14. Sharif J, Aziz SHSA, Hasim K (2000) Radiat Phys Chem 58(2):191–195

    Article  CAS  Google Scholar 

  15. Dubey KA, Pujari PK, Ramnani SP, Kadam RM, Sabharwal S (2004) Radiat Phys Chem 69:395–400

    Article  CAS  Google Scholar 

  16. Basfar AA, Silverman J (1995) Radiat Phys Chem 46(4–6):941–944

    Article  CAS  Google Scholar 

  17. El-Sabbagh SH (2003) Polym Test 22:93–100

    Article  Google Scholar 

  18. Zaharescu T, Mihalcea I (1997) Polym Degrad Stab 55(3):265–268

    Article  CAS  Google Scholar 

  19. Woo L, Sandford CL, Craig L (2002) Radiat Phys Chem 63(3–6):845–850

    Article  CAS  Google Scholar 

  20. Clough RL (1988) In: Mark H (ed) Encyclopedia of Polymer Science and Engineering, vol 13. New York, Wiley

    Google Scholar 

  21. Dubey KA, Bhardwaj YK, Chaudhari CV, Virendra Kumar, Sabharwal S (2009) J Appl Polym Sci 111(4):1884–1891

    Article  CAS  Google Scholar 

  22. Dubey KA, Bhardwaj YK, Chaudhari CV (2009) Virendra Kumar, Goel NK, Sabharwal S. Nucl Inst and Meth B 267:795–801

    Article  CAS  Google Scholar 

  23. Dubey KA, Bhardwaj YK, Chaudhari CV, Virendra Kumar, Goel NK, Sabharwal S (2009) eXpress Polymer Letters 3(8):492–500

    Article  CAS  Google Scholar 

  24. Shi X, Jin J, Chen S, Zhang J (2009) J Appl Polym Sci 113(5):2863–2871

    Article  CAS  Google Scholar 

  25. Chen S, Zhang J, Su J (2009) J Appl Polym Sci 114(5):3110–3117

    Article  CAS  Google Scholar 

  26. Sen M, Mehmet C (2005) Mater Chem Phys 93(1):154–158

    Article  CAS  Google Scholar 

  27. Gheysari D, Behjat A (2001) Eur Polym J 37(10):2011–2016

    Article  CAS  Google Scholar 

  28. Charlesby A (1977) Radiat Phys Chem 9:17–23

    CAS  Google Scholar 

  29. Clough RL (2001) Nucl Instr and Meth B185:8–33

    Google Scholar 

  30. Hildenbrand JH, Scott RL (1949) In: Hildenbrand JH, Scott RL (ed) The solubility of non-electrolytes. 3 rd edition: Reinhold, New York

  31. Flory PJ (1953) In Flory PJ (ed) Principles of Polymer Chemistry. Cornell University Press, Ithaca, New York

    Google Scholar 

  32. Stern SA, Frisch HL (1981) Annu Rev Mater Sci 11:523–550

    Article  CAS  Google Scholar 

  33. Flory PJ, Rehner RJ (1943) J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  34. Li C, Kong Q, Zhao J, Zhao D, Fan Q, Xia Y (2004) Mater Lett 58(27–28):3613–3617

    Article  CAS  Google Scholar 

  35. Hui S, Chaki TK, Chattopadhyay S (2008) J Appl Polym Sci 110(2):825–836

    Article  CAS  Google Scholar 

  36. Alexander LE (1969) X-Ray Diffraction Methods in Polymer Science. Wiley-Interscience, New York

    Google Scholar 

  37. George S, Prasannakumary L, Koshy P, Varughese KT, Thomas S (1996) Mater Lett 26(1–2):51–58

    Article  CAS  Google Scholar 

  38. Varghese H, Bhagawan SS, Rao SS, Thomas S (1995) Eur Polym J 31:957–967

    Article  CAS  Google Scholar 

  39. Mathew AP, Groeninckx G, Michler GH, Radusch HJ, Thomas S (2003) J Polym Sci Part B: Polym Phys 41(14):1680–1696

    Article  CAS  Google Scholar 

  40. Wang ZY (2003) J Poly Sci Part B: Polym Phy 41(19):2296–2301

    Article  CAS  Google Scholar 

  41. Hopfenberg HB, Paul DR (1978) In: Hopfenberg HB, Paul DR, Newman S (eds) Polymer blends, vol 3. New York, Academic Press

    Google Scholar 

  42. Schneier B (1973) J Appl Polym Sci 17(10):3175–3185

    Article  Google Scholar 

Download references

Acknowledgement

Authors sincerely thank Mr. S. A. Khadir of EBPS, RTDD for electron beam irradiation of blends and Mr. S. P. Shejwal, RRAS, RTDD for technical assistance during the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatender K. Bhardwaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, K.A., Bhardwaj, Y.K., Chaudhari, C.V. et al. Electron beam processing of LDPE/EVA/PCR ternary blends: radiation sensitivity evaluation and physico-mechanical characterization. J Polym Res 18, 95–103 (2011). https://doi.org/10.1007/s10965-010-9395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9395-3

Keywords

Navigation