Skip to main content
Log in

Atom transfer radical polymerizations of styrene and butadiene as well as their copolymerization initiated by benzyl chloride / 1-octanol-substituted MoCl5 / PPh3

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel initiator system, benzyl chloride / 1-octanol-substituted MoCl5 / triphenyl phosphine (PPh3), was applied to the atom transfer radical polymerizations (ATRP) of both butadiene and styrene as well as their copolymerization. Characterization revealed a linear increase in the number average molecular weight with monomer conversion and rather wide molecular weight distributions of the polymerization products. Increasing the polymerization temperature promoted the reaction rate and narrowed the polydispersity index of polystyrene proportionally. The polymerization rule for butadiene catalyzed by the above Mo-based system catalyst is similar to that of styrene. The microstructure of the butadiene was investigated by IR and 1H NMR. IR, 13C NMR and DSC measurements showed that the butadiene and styrene copolymer was a random copolymer. The chlorine atom at the ω end group of the polymer and the change in the valence state of molybdenum, as explored by UV-Vis spectroscopy, revealed that the polymerization proceeded in a manner closest to the mechanism of ATRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Granville AM, Boyes SG, Akgun B, Faster MD, Brittain WJ (2004) Macromolecules 37:2790

    Article  CAS  Google Scholar 

  2. Zhao B, He T (2003) Macromolecules 36:8599

    Article  CAS  Google Scholar 

  3. Matyjaszewski K, Xia JH (2001) Chem Rev 101:2921

    Article  CAS  Google Scholar 

  4. Wang J, Matyjaszewski K (1995) Macromolecules 28:7901

    Article  CAS  Google Scholar 

  5. Brandts JAM, Geijn P, van de Faassen EE, van Boersma J, van Koten G (1999) J Organomet Chem 584:246

    Article  CAS  Google Scholar 

  6. Grognec E, Claverie J, Poli R (2001) J Am Chem Soc 123:9513

    Article  Google Scholar 

  7. Stoffelbach F, Poli R, Richard P (2002) J Organomet Chem 663:269

    Article  CAS  Google Scholar 

  8. Stoffelbach F, Haddleton DM, Poli R (2003) Eur Polym J 39:2099

    Article  CAS  Google Scholar 

  9. Stoffelbacha F, Claverieb J, Polia R (2002) C R Chimie 5:37

    Article  Google Scholar 

  10. Duan Q, Miura Y, Narumi A, Shen X, Sato S, Satoh T, Kakuchi T (2006) J Polym Sci Poly Chem 44:1117

    Google Scholar 

  11. Liu S, Gu B, Rowlands HA, Sen A (2004) Macromolecules 37:7924

    Article  CAS  Google Scholar 

  12. Gu B, Liu S, Leber JD, Sen A (2004) Macromolecules 37:5142

    Article  CAS  Google Scholar 

  13. Elyashiv S, Greinert N, Sen A (2002) Macromolecules 35:7521

    Article  Google Scholar 

  14. Liu S, Elyashiv S, Sen A (2001) J Am Chem Soc 123:12738

    Article  CAS  Google Scholar 

  15. Venkatesh R, Harrisson S, Haddleton DM, Klumperman B (2004) Macromolecules 37:4406

    Article  CAS  Google Scholar 

  16. Venkatesh R, Klumperman B (2004) Macromolecules 37:1226

    Article  CAS  Google Scholar 

  17. Hua J, Li X, Li Y, Xu L, Li Y (2007) J Appl Polym Sci 104:3517

    Article  CAS  Google Scholar 

  18. Matyjaszewski K, Xia J (2001) Chem Rev 101:2921

  19. Vazquez Y, Elizalde LE, Najera MA, de los Santos G, Telles JG (2009) Macromol Symp 283–284:45

    Article  Google Scholar 

  20. Zhang F, Lei X, Su Z, Zhang H (2008) J Polym Res 15:319

    Article  CAS  Google Scholar 

  21. Silas RS, Yates J, Thornton V (1959) Anal Chem 31:529

    Article  CAS  Google Scholar 

  22. Wootthikanokkhan J, Peesan M, Phinyocheep P (2001) Eur Polym J 37:2063

    Article  CAS  Google Scholar 

  23. Tanaka Y, Takeuchi Y (1971) J Polym Sci Pol Chem 9:43

    Google Scholar 

  24. Pan Z (2002) Polymer chemistry. Chinese Chemical Industry, Beijing, p 140

  25. Peng Q, Wang J, Chen W, Yu F (1988) Chin J Microw Radiofr Spectrosc (Mag Reson) 5:223

  26. Yu Y, Chen D, Zhang Y, Song J, Tang X (1993) J Qingdao Inst Chem Technol 14:16

    Google Scholar 

  27. Chen D, Kong X, Liu L, Tang X (1991) Chem J Chin Univ 12:276

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Natural Science Foundation of China (No. 50603009) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Hua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, J., Xu, H., Geng, J. et al. Atom transfer radical polymerizations of styrene and butadiene as well as their copolymerization initiated by benzyl chloride / 1-octanol-substituted MoCl5 / PPh3 . J Polym Res 18, 41–48 (2011). https://doi.org/10.1007/s10965-010-9389-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9389-1

Keywords

Navigation