Skip to main content
Log in

Crystallization behavior of melt-spun poly(vinyl alcohol) fibers during drawing process

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The crystallization behavior of melt-spun poly(vinyl alcohol) (PVA) fibers during hot drawing process was studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and computer controlled electronic universal testing machine. The effects of drawing temperature and drawing speed on the crystallinity and the stress induced crystallization of PVA fibers were discussed. The results showed that the crystallization process of PVA fibers during hot drawing presented three stages: initial stage, stress induced crystallization stage and slowly increasing stage. And PVA fibers with high crystallinity can be obtained by properly increasing the drawing temperature and drawing speed, especially when the drawing temperature and speed were 453 K and 100 mm/min respectively. The stress induced crystallinity of PVA fibers during drawing process was the difference between the crystallinity of PVA fibers after drawing and after only heat treatment. At the low drawing speed, i.e. 50 mm/min, due to the strong molecular movement and orientation relaxation under high temperature, the effect of stress induced crystallization weakens with the increase of drawing temperature, the ratio between stress induced crystallinity and thermal induced crystallinity changed from 8.7%:0%(393 K) to 1.7%:5% (453 K). While at the high drawing speeds, i.e. 100 mm/min and 500 mm/min, with the decrease of available orientation relaxation time, the stress induced crystallization plays an important role during the drawing process, the ratio between stress induced crystallinity and thermal induced crystallinity were 8%:2.9% and 10.2%:0.5% at 453 K respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salamone JC (1996) Polymeric materials encyclopedia. CRC, New York, p 6998

    Google Scholar 

  2. Sakurada I (1985) Polyvinyl alcohol fiber. Dekker, New York

    Google Scholar 

  3. Finch CA (1992) Polyvinyl alcohol developments. Wiley, Chichester

    Google Scholar 

  4. Yamaura K, Kumakura R (1999) J Appl Polym Sci 77:2872

    Article  Google Scholar 

  5. Fujiwara H, Shibayama M, Chen HJ (1989) J Appl Polym Sci 37:1403

    Article  CAS  Google Scholar 

  6. Dai LX, Yu SY (2003) Polym Adv Technol 14:449

    Article  CAS  Google Scholar 

  7. Kubo S, Kadla JF (2003) Biomacromolecules 4:561

    Article  CAS  Google Scholar 

  8. Ku TH, Lin CA (2005) J Polym Res 12:23

    Article  CAS  Google Scholar 

  9. Okazaki M, Tsujimoto T, Fujiwara N (2005) Jpn Pat 2005306901

  10. Haralabakopoulos AA, Tsiourvas D, Paleos CM (1998) J Appl Polym Sci 69:1885

    Article  CAS  Google Scholar 

  11. Hiroshi N, Nobuo D, Takeaki M (1998) J Polym Sci: Part A 36:3045

    Article  Google Scholar 

  12. Piao DS, Toshio K (1982) Sen’I Gakkaishi 38:43

    Google Scholar 

  13. Lin CA, Ku TH (2008) J Mater Pro Tech 200:331

    Article  CAS  Google Scholar 

  14. Ku T, Lin CJ (2005) Text Res 75:681

    Article  CAS  Google Scholar 

  15. Wang R, Wang Q, Li L (2001) Polym Mater Sci Eng 17:111

    Google Scholar 

  16. Wang R, Wang Q, Li L (2003) Polym Int 52:1820

    Article  CAS  Google Scholar 

  17. Li L, Wang Q, Wang R (2005) J Appl Polym Sci 98:774

    Article  CAS  Google Scholar 

  18. Zhang H, Wang Q, Li L (2009) Polym Int 58:97

    Article  CAS  Google Scholar 

  19. Chen N, Li L, Wang Q (2007) Plast Rubber Compos 36:283

    Article  CAS  Google Scholar 

  20. Salem DR (1992) Polymer 33:3182

    Article  CAS  Google Scholar 

  21. Kawakami D, Benjamin S, Burger C (2004) Polymer 45:905

    Article  CAS  Google Scholar 

  22. Wang Q, Li L, Chen N (2007) Cn Pat ZL200510057435.0

  23. Jacqueline IK (2003) Encyclopedia of polymer science and technology. Wiely, New Jersey, p 399

    Google Scholar 

  24. Salem DR (1992) Polymer 33:3189

    Article  CAS  Google Scholar 

  25. Salem DR, Aminuddin N, Baird (2001) Structure formation in polymeric fibers. Hanser, Cincinati

    Google Scholar 

  26. Salem DR (1994) Polymer 35:771

    Article  CAS  Google Scholar 

  27. Assender HE, Windle AH (1998) Polymer 39:4295

    Article  CAS  Google Scholar 

  28. Hong PD, Chen JH, Wu HL (1998) J Appl Polym Sci 69:2477

    Article  CAS  Google Scholar 

  29. Miyazaki T (2007) Macromolecules 40:8277

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is supported by National Natural Science Foundation of China (50673068, 50833003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Chen, N. & Wang, Q. Crystallization behavior of melt-spun poly(vinyl alcohol) fibers during drawing process. J Polym Res 17, 903–909 (2010). https://doi.org/10.1007/s10965-009-9382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-009-9382-8

Keywords

Navigation